EVALUACIÓN DEL MULTIPLE DE ESCAPE PARA EL MOTOR G13B SUZUKI. METODOLOGÍA DIGITAL Y EXPERIMENTAL.

EVALUATION OF THE EXHAUST MANIFOLD FOR THE G13B SUZUKI ENGINE. DIGITAL AND EXPERIMENTAL METHODOLOGY.

Edwin Arroyo¹, Juan Rocha-Hoyos², Edilberto Llanes Cedeño³, Luis Mena Navarrete⁴ ¹Universidad Internacional SEK, Facultad de Arquitectura e Ingenierías, Casilla 17-03-02, Quito - Ecuador ²Universidad Técnica del Norte, Facultad de Ingeniería y Ciencias Aplicadas, Casilla 199, Ibarra - Ecuador ³Universidad de las Fuerzas Armadas ESPE, Departamento de Energía y Mecánica, Sangolquí - Ecuador e – mail : ¹esarroyo@utn.edu.ec, ²carlos.rocha@uisek.edu.ec ec , ³antonio.llanes@uisek.edu.ec, ⁴lamena@espe.edu.ec

Revista Energía Mecánica Innovación y Futuro, VII Edición 2018, No. 14 (14)

Resumen

La presente investigación tiene como objetivo diseñar el múltiple de escape para un vehículo Suzuki con motor G13B Twin Cam, mediante el uso del software de código libre 1D OpenWAM, para la obtención de las dimensiones y configuración de mayor potencia máxima. Se fabrica el múltiple de escape por dos métodos, denominados A (doblado de tubos con aplastamiento en la zona de curvatura) y B (unión de tubos predoblados de sección constante), a fin de observar el efecto del proceso de construcción en el desempeño del motor. Se logra un incremento de potencia máxima de 8 % y 10 % para el tipo A y B, respectivamente. Finalmente se corrobora los resultados de simulaciones con pruebas experimentales en un dinamómetro. encontrando una diferencia promedio menor al 8 %, con gran semejanza en la silueta de las curvas características, lo cual asegura el proceso computacional, reduciéndose el costo y tiempo de diseño y experimentación.

Palabras clave:

Simulación 1D, *OpenWAM*, múltiple de escape, torque y potencia del motor.

Abstract

The present research aims to design the exhaust manifold for a Suzuki vehicle with G13B Twin Cam engine, by using the free code 1D OpenWAM software, in order to obtain the dimensions and configuration of power maximum. The exhaust manifold is manufactured by two methods, known as A (bending of tubes with flattening in the curvature zone) and B (joining of pre-bent tubes of constant section), in order to observe the effect of the construction process on the performance of the motor. It achieves a maximum power increase of 8% and 10% for type A and B, respectively. Finally, the confirm the results of simulations with experimental tests in a dynamometer, finding an average difference less than 8%, with great similarity in the silhouette of the characteristic which curves, ensures the computational process, reducing the cost and time of design and experimentation

Keywords:

1D simulation, *OpenWAM*, exhaust manifold, engine torque and power.

1. INTRODUCCIÓN

En la actualidad el desarrollo de autopartes apunta a la disminución de tiempos de diseño, reducción de costosos ensayos experimentales e incremento de las prestaciones de los vehículos y sus sistemas, mediante la aplicación de software especializado, con la capacidad de representar diversas geometrías y complejidad de los motores [1, 2]. En este sentido OpenWAM es una herramienta gas-dinámica 1D que permite representar el motor mediante bloques y conductos, a los cuales se asigna los parámetros y variables facilitando la obtención de información de acuerdo a los cambios generados en cualquier elemento simulado [3, 4].

El diseño adecuado del múltiple de escape permite reducir las pérdidas por bombeo y mejorar la eficiencia volumétrica de un motor, de manera que, la configuración y longitudes de los conductos influyen directamente en su desempeño [5, 6, 7].

Si bien es cierto, el análisis a partir del cálculo computacional mediante modelos matemáticos reduce las opciones de diseño y selección de elementos, se hace aún necesario el ensayo experimental en los diseños finales para obtener resultados precisos, ya que pueden existir ligeras variaciones en función de las pérdidas mecánicas y desgastes provocados en los motores durante el funcionamiento [7].

En este trabajo se emplea el software OpenWAM para modelar el motor G13B Suzuki de encendido provocado de cuatro tiempos. Mediante el análisis de las curvas de torque y potencia se trabaja en la selección de configuración y dimensiones del múltiple de escape que aporte mayor desempeño al motor, validando el proceso computacional mediante pruebas en un dinamómetro de chasis.

2. MATERIALES Y METODOS

El presente trabajo considera un método de investigación computacional aplicando software de modelación OpenWAM y de experimentación en dinamómetro para evaluar las prestaciones del motor.

Motor de experimento

Se utilizó un vehículo Suzuki Twin Cam, motor de cuatro cilindros en línea, con cuatro válvulas por cilindro. Las características del motor se describen en la tabla 1.

Tabla 1.	Especificacione	es del motor
----------	-----------------	--------------

Parámetro	Valor
Motor	G13B, DOHC
Cilindrada	1298 cm ³
Diámetro x carrera	74 x 75.5 mm
Relación de compresión	10:1
Orden de encendido	1-3-4-2
Reglaje de encendido - básico	$6 \pm 1/850$
APMS	°APMS/rpm
Sistema de combustible	MPF-i
Combustible	Gasolina
Régimen de ralentí	850 ± 50 rpm
Relación Aire-Combustible AFR	14.7:1

Nota: Elaboración propia

Simulación OpenWAM

OpenWAM sirve en el modelado de un motor de combustión interna (MCI), de encendido provocado (MEP), de cuatro cilindros y cuatro tiempos (4T), el cual trabaja con un sistema de bloques donde se ingresan los datos de cada componente del motor, desde la admisión de aire fresco hasta la salida de gases combustionados, según el modelo que se requiere analizar; en la tabla 2, se visibiliza estas variables.

	Tabla	2.Variables	principales de	el software	OpenWAM
--	-------	-------------	----------------	-------------	----------------

Tipo B	loque D	efinición	
	"]	Motor 4T	
Motores	T	Cilindro 4T	
	\ll	Ramificación	
Nodos de		Unión entre dos	
unión		conductos	
		Extremo a la	
		atmósfera	
	Ħ	Unión a depósito	
Constiones	111	Válvula de	
Collexiones		admisión	
	乙	Válvula de escape	
Elementos	\frown	Cámara de	
0D		volumen constante	
	FIEC	Condiciones	
Otros	EJEU	iniciales	
	10	Línea de conexión	

Nota: Elaboración propia

Establecimiento de las variables del motor

En el bloque del motor 4T, se abre un cuadro de diálogo (figura 1), en el cual se definen los parámetros de condiciones de trabajo, transferencia de calor, geometría, pérdidas mecánicas y demás variables que en la tabla 3 se visibiliza a detalle.

Property	Value		^
Motor type	MEP		
Engine operating condition	Steady state		11
EGR's calculation	No		11
Number of cycles without thermal inertia	10		t I
Wall temperature calculation	Constant	_	11
nitial engine speed (rpm)	6500		11
ntake pressure at the intake closing (bar	1		
Wall temperature calculation. It is recome remperature with thermal inertia for calcul hermal inertia for calculations in stational	4 nended to use varia ations in transitory a y.	ble nd without	< >
Wall temperature calculation. It is recome emperature with thermal inertia for calcul thermal inertia for calculations in stational	4 nended to use varia ations in transitory a y.	ble nd without	
Wall temperature calculation. It is recome emperature with thermal inertia for calcul hermal inertia for calculations in stational working conditions	ended to use varia ations in transitory a y.	ble nd without Geomet	

Figura 1. Cuadro de diálogo para motor 4T.

Tabla	2. Variables	principales	del	software	OpenWAM
-------	--------------	-------------	-----	----------	---------

Parámetro	Valor		
CONDICIONES DE TRABAJO			
Tipo de motor	MEP		
Condición de operación	Steady state		
Cálculo EGR	No		
Número de ciclos	10		
Cálculo de temperatura de pared	Constant		
Velocidad de motor (rpm)	6500		
Presión de admisión en el cierre de admisión (bar)	1		
Masa en el cierre de admisión (g)	0.5		
Presión en el cilindro a la apertura de válvula de escape	Calculated		
Presión en el cierre de escape (bar) Masa de combustible invectado	-		
(mg)	-		
Relación relativa aire-combustible	1		
Eficiencia de combustible	1		
Poder calorífico del combustible (kJ/kg)	41870		
Densidad de combustible (kg/m3)	854		
Número de conductos de eficiencia volumétrica	Hacer referencia al conducto de ingreso de aire fresco en la admisión		
Modelo de combustión	Imposing Heat Release Law		
Mezcla constante	-		

ESPE N
DEPARTAMENTO DE CIENCIAS DE LA

Espesor de pared de cilindro (mm)	7
Conductividad del material del	150
cilindro (W/mK)	150
Densidad del material del cilindro	7412
(kg/m^3)	/415
Calor específico del material del	700
cilindro (J/kgK)	700
Espesor de pared del pistón (mm)	25
Conductividad del material del	150
pistón (W/mK)	150
Densidad del material del pistón	1010 64
(kg/m^3)	4019.64
Calor específico del material del	1000
pistón (J/kgK)	1000
Espesor de pared del cabezote (mm)	15
Conductividad del material del	250
cabezote (W/mK)	250
Densidad del material del cabezote	10.10
(kg/m^3)	4842
Calor específico del material del	1000
cabezote (J/kgK)	1000
Área de pistón (cm^2)	43.01
Temperatura media de pistón (°C)	400
Área de cabezote (cm^2)	41.85
Temperatura media de cabezote (°C)	350
Temperatura media del cilindro (°C)	300
Coeficiente de ajuste de	F
transferencia de calor en la admisión	5
Coeficiente de ajuste de	1
transferencia de calor en el escape	1
Temperatura del refrigerante (°C)	90.2
Coeficiente de transferencia de calor	0.100
CW1	3.122
Coeficiente de transferencia de calor	0.0
CW2	0.2
Coeficiente de transferencia Xpe	1.5
Torque a máxima potencia (Nm)	112.5
GEOMETRIA DEL MOTOR	
Longitud de biela (mm)	120
Carrera de pistón (mm)	75.5
Diámetro de cilindro (mm)	74
Relación de compresión	10
Diámetro de la cámara en el pistón	-
(mm)	0
Àltura de la cámara en el pistón	C
(mm)	0
Distancia entre válvulas (mm)	37

TRANSFERENCIA DE CALOR

Definición del modelo

En el bloque de ejecución (EJEC) se definen los datos del método de cálculo, número de ciclos de convergencia (mínimo recomendado 10 ciclos), condiciones de temperatura y presión, sustancia de combustible, como se muestra en la figura 2. Los métodos de resolución para el sistema de ecuaciones se pueden clasificar de acuerdo a la precisión en la solución, siendo éstos de primer orden (método de las características, Lax-Friedrichs, Lax-Wendroff), segundo orden (Lax-Wendroff de dos pasos,

McCormack predictor-corrector o Godunov) o alta resolución (Flux Corrected Transport-FCT, Total Variation Diminution-TVD); estos últimos permiten obtener soluciones no difusivas y sin sobreoscilaciones, pero con un costo computacional más elevado [8].

- L	Deta_		101 1000
A	Parametric study variables	Provery	Value
	Define additional text	Calculation methodology	Independent
	Mean and instantaneous results	Number of angles typics or simulation duration (s)	10
	Space-time results	Epecific heat ratio	Specific heat ratio constant
	Delete	Andsent pressure (bal)	1
1		Antisent temperature (*)	20
111		Speciel calculation	Seplied
ш		Alter extend calculators	No
		Canader hart specie	No
		Falsdotaice	Gardine
		Plate Andoret pressure (but	
		Las [Names a network] Atomation	sequences

Figura 2. Definición de modelo.

Montaje de motor

VÁLVULAS.- Se establecen en dos válvulas de admisión y dos de escape por cilindro, considerando los diámetros, ángulos de apertura y cierre como se indica en la tabla 4.

Tabla 4. Parámetros de válvulas

	Admisión	Escape
Diámetro de válvula (mm) 2	9.1	24.9
Ángulo de apertura de válvula (°)	352	138
Control de velocidad M	otor	Motor
Velocidad	-	-
Relación de velocidad	1	1
Diámetro de referencia para cálculo Cd (mm)	29.1	24.9
Intervalo de levantamiento (mm)	1	1

Para comprobar los daños en el maniquí de pruebas de impacto, se mide la aceleración en las partes principales como se puede observar en la figura 2, en donde la curva verde pertenece al ensayo sin atenuador y la curva azul al ensayo con atenuador, las unidades están expresadas en mm/s².

Los ángulos de apertura de las válvulas se determinan en función del diagrama de distribución, con los respectivos avances y retrasos como se muestra en la figura 3. Las válvulas de admisión permanecen

abiertas 224°, mientras que las de escape 232°.

Figura 3. Diagrama de distribución de válvulas.

SISTEMA DE ADMISIÓN.- En el sistema de admisión del motor se consideran tres secciones: la primera hace referencia al ingreso de aire fresco al múltiple de admisión, la segunda los conductos desde el múltiple de admisión al cabezote y la tercera los conductos dentro del cabezote, como se indica en la figura 4.

Figura 4. Secciones del sistema de admisión

Los datos empleados en cada sección del sistema de admisión se resumen en la tabla 5, siendo los más representativos los diámetros y longitudes de cada uno de ellos.

Variables	Sección 1	Sección 2	Sección 3
Espacio de malla (m)	0.05 0	.05	0.005
Tipo de conducto I	ntake pipes	Intake pipes	Intake pipes
Calculo de temperatura de pared	Constant C	onstant	Constant
Rugosidad de conducto (mm)	0.15 0	.15	0.15
Temperatura inicial de pared	20 2	0	20
(°C) 1 emperatura inicial del gas (°C)	20	20	20

Presión inicial del gas (bar)	1	1	1
Velocidad inicial del gas (m/s)	0	0	0
Coeficiente de			
corrección de la transferencia de	1	1	1
temperatura			
Coeficiente de corrección de	1	1	1
fricción			
Número de ductos de intercooler	1	1	1
Diámetro de entrada (mm)	73.2	44	44
Longitud (mm)	31 2	50	85
Diámetro de salida (mm)	73.2	44	29.1
Método numérico	Lax	Lax	Lax
Submodelo	Wendroff	Wendroff Without	Wendroff Without
	correction	correction	correction

Modelo final

Dentro del software OpenWAM se modelaron dos configuraciones de múltiples: 4-1 y 4-2-1, en busca del que aporte mejores resultados de potencia al motor.

En la configuración 4-1 se unen los conductos de escape de los cuatro cilindros en un solo colector, como se muestra en la figura 5.

Figura 5. Configuración 4-1 en OpenWAM

En la configuración 4-2-1, mostrada en la figura 6, se conectan los cilindros desfasados 360° según el orden de encendido, en este caso inicialmente se unen los cilindros 1-4 y 2-3, para luego ensamblarse en un colector final. El múltiple de escape original del vehículo Suzuki de igual manera trae esta configuración.

Figura 6. Configuración 4-2-1 en OpenWAM

Una vez definidos los elementos y sus parámetros se realiza una compilación de archivos con lo cual se da inicio a la simulación. Si existe algún error en el modelo, OpenWAM indicará donde se encuentra el problema que se debe corregir para poder correr la simulación nuevamente, como se presenta en la figura 7.

Deputatie tie	Data Ne		
DIVENTED/10 DENVIREPRETTWEECHE AT OWNER AT OUR	Start calculation		
	Add te calculation queue Temp calculation Define order		
	these mean smalls Show instantaneous smalls View solid for		

Figura 7. Inicio de simulación

Finalizadas las simulaciones se tiene para cada caso dos archivos de resultados con la extensión *.DAT, correspondientes a los instantáneos (INS) y promedios (AVG), que pueden ser abiertos con Excel, para su procesamiento.

Pruebas Dinamométricas

Para la determinación de la potencia y torque experimentalmente, se utilizó el dinamómetro rodillos marca MAHA (Maschinenbau de Haldenwang) LPS 3000, desarrollando los ensayos a 2850 msnm. Las pruebas dinamométricas se llevaron a cabo según la norma INEN 960 [9], basada en la ISO 1585 y la ISO 3173, obteniendo las curvas características del vehículo mediante cinco ensayos con cada múltiple de escape analizado.

3. RESULTADOS Y DISCUSIÓN

Evaluación modelado 1D

El múltiple original, fabricado en dos piezas de hierro fundido utiliza una configuración 4-2-1, uniendo los cilindros 1-4 y 2-3 en los conductos primarios de 273 mm de longitud, para conectarse posteriormente en los conductos secundarios de 318 mm de longitud.

Para la configuración 4-2-1 se realizó un estudio paramétrico inicial a 6500 rpm (figura 8), modificando las variables de longitud del colector en un rango de 250 a 400 mm, tanto para primario como para secundario. En las combinaciones de primario-secundario (mm): 250-350, 350-350, 400-350, 250-400, 300-400, 350-400, se alcanza mejores resultados de potencia. Se seleccionó la configuración 350-400 mm para simularla en el rango de 2500 a 7500 rpm y observar el comportamiento en todo el rango de revoluciones.

Figura 8. Comparación de potencia para varias dimensiones en la configuración 4-2-1

En la configuración 4-1 se varia la longitud de la tubería de 650 a 800 mm en pasos de 25 mm, analizando inicialmente a 6500 rpm (figura 9). Con la dimensión de tubería de 775 mm el motor alcanzó mejor rendimiento por lo que se analizó con esta característica en todo el rango de revoluciones.

Figura 9. Comparación de potencia para longitudes entre 650 a 800 mm, cada 25 mm

En base a los resultados analizados, se seleccionó la configuración 4-1 para la construcción del múltiple por dos métodos, denominados A y B, en acero ASTM A500 de 1.5 mm de espesor.

El tipo A, de la figura 10, se realizó mediante el doblado de los tubos con una dobladora hidráulica, en el cual, se produjo deformación de la sección transversal en las curvaturas. El tipo B, se fabricó mediante la unión de secciones de tubos previamente doblados, los cuales mantienen constante la sección circular de la tubería durante todo el trayecto.

Figura 10. Múltiple de escape 4-1, tipo A (izquierda), Múltiple de escape 4-1, tipo B (derecha)

En la figura 11, se muestran las curvas comparativas de potencia y en la figura 12 las curvas de torque, en donde el múltiple de construcción tipo A presenta una diferencia promedio 8 % con la curva obtenida del proceso computacional, mientras que el colector tipo B tiene una variación promedio menor, cercana al 4 %. Dentro de la simulación en OpenWAM los diámetros de conductos se consideran constantes durante todo el trayecto del múltiple, por tal motivo, los resultados tienen mayor semejanza con la construcción tipo B.

Figura 11. Comparación de curvas de potencia para múltiple 4-1 según los resultados de la simulación 1D y los múltiples tipo A y B probados en el dinamómetro.

Figura 12. Comparación de curvas de torque para múltiple 4-1 según los resultados de la simulación 1D y los múltiples tipo A y B probados en el dinamómetro.

La tabla 6 consiste en un cuadro estadístico en donde se analiza la variación de resultados de la simulación 1D respecto al ensayo experimental con el múltiple 4-1 de construcción tipo A y tipo B, expresado en porcentaje para cada velocidad de giro de motor. Al comparar los resultados de OpenWAM con las pruebas dinamométricas se tiene que, las variaciones más importantes se dan a bajas revoluciones; sin embargo, en las revoluciones de interés, es decir mayor a 6000 rpm, el error computacional es menor al 4 %, otorgando confiabilidad al proceso de simulación.

n	Dinamómetro: Tipo A	Dinamómetro Tipo B	o: 1D OpenWAM	Variación 1D-tipo A	Variación 1D-tipo B
[rpm]	[kW]	[kW]	[kW]	[%6]	[%6]
2800	26.44	28.29	30.60	16	8
3500	34.14	36.25	38.59	13	6
4500	41.66	43.97	45.48	9	3
5500	53.54	57.95	58.99	10	2
6000	59.45	62.02	60.44	2	3
6500	63.07	65.14	62.63	1	4
7000	64.86	65.21	66.41	2	2
		Valor minimo	1	2	
		Mediana	9	3	
Valor máximo			16	8	
	D	esviación estándar	6	2	
			Rango	15	6
			Promedio	8	4

En la figura 13, se muestran los resultados de potencia de las pruebas dinamométricas al probar el múltiple original y los dos múltiples construidos tipo A y tipo B. Con el diseño y dimensiones analizadas en OpenWAM se obtuvo una ganancia de potencia máxima entre 8 % a 10 %; el tipo de construcción tiene una fuerte influencia, ya que el método tipo B (sección circular de tubería constante [10]) mejora el desempeño del motor en todo el rango de revoluciones.

Figura 13. Comparación de curvas de potencia para múltiple original y construcciones tipo A y tipo B.

4. CONCLUSIONES

El modelo unidimensional entrega resultados acordes al funcionamiento del motor, por tanto, es válida su aplicación en la optimización de longitudes y diámetros de múltiples de escape. El modelado 1D, requiere proporcionar al programa datos experimentales de la geometría y funcionamiento del motor analizado, para la obtención de resultados acertados.

En el caso del múltiple 4-1 de construcción tipo A (tubos doblados), existe un error promedio del 8 % entre los resultados de los ensayos experimentales respecto a la simulación 1D, que se atribuye a los cambios de sección transversal de la tubería en la zona de las curvaturas. Mientras que al comparar los resultados computacionales con los ensayos del múltiple 4-1 de construcción tipo B se tiene un error promedio de apenas 4 %.

El múltiple de escape propuesto de configuración 4-1 incrementa la potencia máxima en 8 % para el tipo A y 10 % para el tipo B, así como también un incremento de torque máximo de 3 % para el tipo A y 9 % para el tipo B, en relación al sistema original; ayudando al mejor desempeño del motor en altas revoluciones, esto es, sobre las 5 000 rpm.

5. REFERENCIAS

[1] Blair, G., Mackey, D., Ashe, M., y Chatfield, G. (2001). Exhaust tuning on a four-stroke engine; experimentation and simulation. SAE Technical Paper, 2001-01-1797. doi:10.4271/2001-01-1797

[2] Mackey, D., Crandall, J., Charfield, G., y

ENERGÍA MECÁNICA INNOVACIÓN Y FUTURO No. 7 Vol. 1/2018 (14) ISSN 1390 - 7395 (14/14)

Ashe, M. (2002). Optimization of exhaust-pipe tuning on a 4-stroke engine using simulation. SAE Technical Paper,2002-01-0002. doi:10.4271/2002-01-0002.

- [3] CMT-Motores Térmicos. (2017). OpenWAM. Valencia, España: Universidad Politécnica de Valencia. Didapatkan dari http://www.cmt. upv.es/OpenWam01.aspx.
- [4] Galindo, J., Tiseira, A., Fajardo, P., y Navarro, R. (2011). Coupling methodology of 1D finite difference and 3D finite volumen CFD codes based on the Method of Characteristics. Mathematical and Computer Modelling. 54, 1738-1746. doi:10.1016/j.mcm.2010.11.078.
- [5] Bermúdez, V., y Tormos, B. (2011). Pérdidas mecánicas. Dalam F. Payri, y J. M. Desantes (Ed.), Motores de combustión interna alternativos (hlm. 152-172). Barcelona, España: Editorial Reverté.
- [6] Massimo, M. (2010). Measurement of the effect on brake performance of the intake and exhaust system components in a motorbike high speed Racing engine. Applied Acoustics, 71, 1-10. doi:10.1016/j.apacoust.2009.07.01.
- [7] Kanawade, N., & Siras, O. (2015). Design, analysis and development of 4-cylinder IC engine exhaust manifold. International Engineering Research Journal, 472-478.
- [8] Galindo, J., y Hernández, J. (2011). Modelado de motores. Dalam F. Payri, y J. M. Desantes (Ed.), Motores de combustión interna alternativos (hlm. 746-796). Barcelona, España: Editorial Reverté.
- [9] Instituto Ecuatoriano de Normalización. (1984). Determinación de la potencia neta del motor. NTE INEN 960:1984, Vehículos automotores.
- [10] Mohiuddin, A., Rahamn, A., & Dzaidin, M. (2007). Optimal design of automobile exhaust system using GT-Power. International Journal of Mechanical and Materials Engineering, 2(1), 40-47.

6. BIOGRAFÍAS

¹Edwin Salomón Arroyo Terán, nació en Quito, Ecuador. Es Ingeniero Automotriz, Magíster Mecánico en Diseño con mención fabricación en de autopartes. Docente en la Universidad Técnica del Norte.

Imparte servicios de asesoramiento y capacitación en diseño mecánico.

²Juan Rocha Hoyos.- Ingeniero Automotriz, Universidad de las Fuerzas Armadas ESPE, Magister en Sistemas Automotrices, Escuela Politécnica Nacional. Investiga en temas: Elementos de los

sistemas automotrices, motores y sus emisiones, además de la electrónica automotriz. Ha trabajado como docente en la Universidad de las Fuerzas Armadas ESPE y actualmente profesor auxiliar en la Universidad Internacional SEK Quito – Ecuador.

³Edilberto Llanes Antonio Cedeño. Ingeniero Mecánico Automotriz y Master en Eficiencia Energética por la Universidad de Cienfuegos - Cuba y PhD en Ciencias Técnicas por la Universidad Politécnica de Madrid - España.

Investiga en temas de: Eficiencia Energética, Energía y Ambiente. Posee 15 años de experiencia en la docencia entre la Universidad de Granma – Cuba, Universidad de Zambeze – Mozambique y la Universidad Internacional SEK Quito – Ecuador.

⁴Luis Antonio Mena Navarrete; Ingeniero Mecánico, Universidad "Amistad de los Pueblos" de Moscú Rusia. Magister Ciencias en en Ingeniería. Investiga en temas relacionados con las rugosidades de los elementos automotrices,

El rendimiento de los motores gasolina, El comportamiento del biodiesel en motores de combustión interna, autor de la obra "Compilador

