REVISTA ENERGÍA MECÁNICA INNOVACIÓN Y FUTURO
Vol. 13 Núm. 1 / 2024
RONQUILLO J., CHANCAY E., ESTRELLA M., Desarrollo de una Metodología para la Generación de Mapas Cartográficos de
Inyección y Encendido Utilizando una ECU Programable en Motores de Encendido Provocado con Cuerpo de Aceleración
Electrónico Edición No.13/2024 (10) ISSN 1390- 7395 (6/10)
---------------------------------------Artículo Científico / Scientific Paper ___________________________________________________
- 69 -
[11] Adelman, B., Singh, N., Charintranond, P., Manis,
J.: Achieving Ultra-Low NOx Tailpipe Emissions
with a High Efficiency Engine. Presented at the
April 14 (2020). https://doi.org/10.4271/2020-01-
1403.
[12] Abonyi, E.S., Uche, U.I., Okafor, A.A.:
Performance of Fuel Electronic Injection Engine
Systems. In-ternational Journal of Trend in
Scientific Research and Development (IJTSRD).
Volume-2, 9 (2017).
https://doi.org/10.31142/ijtsrd8211.
[13] Shridhar Kuntoji, M., Medam, V., Devi S.V, V.:
Design of UDS Protocol in an Automotive
Electronic Control Unit. Presented at the January 9
(2023). https://doi.org/10.3233/ATDE221266.
[14] Kritsanaviparkporn, E., Baena-Moreno, F.M.,
Reina, T.R.: Catalytic Converters for Vehicle
Exhaust: Fundamental Aspects and Technology
Overview for Newcomers to the Field. Chemistry
(Easton). 3, 630–646 (2021).
https://doi.org/10.3390/chemistry3020044.
[15] Ashok, B., Usman, K.M., Vignesh, R., Umar, U.A.:
Model-based injector control map development to
improve CRDi engine performance and emissions
for eucalyptus biofuel. Energy. 246, 123355 (2022).
https://doi.org/10.1016/j.energy.2022.123355.
[16] Canal, R., Riffel, F.K., Gracioli, G.: Driving Profile
Analysis Using Machine Learning Techniques and
ECU Data. In: 2023 IEEE 32nd International
Symposium on Industrial Electronics (ISIE). pp. 1–
6. IEEE (2023).
https://doi.org/10.1109/ISIE51358.2023.10228139.
[17] Burkacky, O., Deichmann, J.D., Stein, J.P.:
Automotive software and electronics 2030:
Mapping the sector’s future landscape. McKinsey
(2023).
[18] Cherian, F., Ranjan, A., Bhowmick, P., Rammohan,
A.: Model based design of electronic throttle
control. IOP Conf Ser Mater Sci Eng. 263, 062063
(2017). https://doi.org/10.1088/1757-
899X/263/6/062063.
[19] Ashok, B., Denis Ashok, S., Ramesh Kumar, C.:
Trends and future perspectives of electronic throttle
control system in a spark ignition engine. Annu Rev
Control. 44, 97–115 (2017).
https://doi.org/10.1016/j.arcontrol.2017.05.002.
[20] Zulkifli, S.A., Asirvadam, V.S., Saad, N., Aziz,
A.R.A., Mohideen, A.A.M.: Implementation of
electronic throttle-by-wire for a hybrid electric
vehicle using National Instruments’ CompactRIO
and LabVIEW Real-Time. 2014 5th International
Conference on Intelligent and Advanced Systems:
Technological Convergence for Sustainable Future,
ICIAS 2014 - Proceedings. (2014).
https://doi.org/10.1109/ICIAS.2014.6869555.
[21] B, A., Denis Ashok, S., Kavitha, C.: Closed Loop
Throttle Opening Angle Estimation Strategy by
Con-sidering Torque Demands from SI Engine.
Presented at the July 9 (2018).
https://doi.org/10.4271/2018-28-0079.
[22] Arsie, I., Frasci, E., Irimescu, A., Merola, S.S.:
Spark Timing Optimization through Co-Simulation
Analysis in a Spark Ignition Engine. Energies
(Basel). 17, 3695 (2024).
https://doi.org/10.3390/en17153695.
[23] Jassim, E.I., Jasem, B.I.: Contribution of Ignition
Timing Variation to the Greenhouse Gas Emission
and Coolant Performance in Spark Ignition Engine.
IOP Conf Ser Earth Environ Sci. 219, 012013
(2019). https://doi.org/10.1088/1755-
1315/219/1/012013.
[24] Chatlatanagulchai, W., Moonmangmee, I.,
Rhienprayoon, S., Wannatong, K.: Sliding Mode
Control of Air Path in Diesel-Dual-Fuel Engine.
Presented at the April 12 (2011).
https://doi.org/10.4271/2011-01-0917.
[25] Wu, Y.-Y., Chen, B.-C., Wu, C.-H., Tsai, H.-C.: New
Charging Model Imparting the Valve Timing for
Real-Time Simulation. In: ASME 2009 Internal
Combustion Engine Division Spring Technical
Conference. pp. 431–438. ASMEDC (2009).
https://doi.org/10.1115/ICES2009-76028.
[26] Xie, Y., Kistner, A., Bleile, T.: Optimal Automated
Calibration of Model-Based ECU-Functions in Air
System of Diesel Engines. Presented at the May 5
(2018). https://doi.org/10.4271/2018-01-5003.
[27] Kurniawan, A., Sudarmanta, B., Yuvenda, D.: The
Influence of Air Fuel Ratio on the Performances and
Emissions of a SINJAI-150 Bioethanol Fueled
Engines. The International Journal of Mechanical
Engi-neering and Sciences. 2, 16 (2018).
https://doi.org/10.12962/j25807471.v2i2.6396.
[28] Al-Arkawazi, S.A.F.: Analyzing and predicting the
relation between air–fuel ratio (AFR), lambda (λ)
and the exhaust emissions percentages and values of
gasoline-fueled vehicles using versatile and portable
emissions measurement system tool. SN Appl Sci.
1, 1370 (2019). https://doi.org/10.1007/s42452-
019-1392-5.