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Abstract—Sudden changes in a greenhouse environment can 
have detrimental effects on crop development and production, 
especially in greenhouses with natural ventilation that experience 
low temperatures at night and rapid fluctuations due to wet 
winds. To address this issue, we propose a robust controller 
based on Quantitative Feedback Theory (QFT) from a Smith 
predictor structure for the dead-time system. This controller, 
which offers high stability based on the gain margin, the phase 
margin, and the rejection of disturbances in the system output, is 
designed to mitigate these variations. To assess its practical value, 
we compared this QFT controller with a PID controller based on 
performance indices related to the transient response and error 
in the presence of changes in the point of operation and charge 
disturbances. The final results clearly demonstrated the superior 
dynamic response of the QFT controller, suggesting its potential 
for improving temperature control in greenhouses and enhancing 
crop productivity. 
 

Index Terms— QFT controller, robust control, temperature 
control, Smith predictor 
 

Resumen—Los cambios repentinos en el ambiente del 
invernadero tienen un impacto negativo en el desarrollo y la 
producción de cultivos, especialmente en invernaderos con 
ventilación natural cuando las temperaturas son bajas en la 
noche y cambian rápidamente debido a los vientos húmedos. 
Para mitigar estas variaciones, se propone el diseño de un 
controlador robusto basado en la Teoría de Realimentación 
Cuantitativa, (por su sigla en inglés QFT), a partir de una 
estructura tipo predictor de Smith para sistemas con tiempo 
muerto. Este esquema ofrece una alta estabilidad basada en el 
margen de ganancia, el margen de fase y el rechazo de las 
perturbaciones en la salida del sistema. El diseño se contrastó con 
un controlador PID basado en índices de desempeño, de acuerdo 
con la respuesta transitoria y el error ante la presencia de 
cambios en el punto de operación y las perturbaciones de carga. 
Los resultados finales mostraron que la respuesta dinámica del 
controlador QFT mejoró en comparación con los resultados del 
controlador PID. 
 

Palabras Claves—Controlador QFT, control robusto, control 
de temperatura, predictor Smith 
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I. INTRODUCTION 

OOD production in greenhouses with controlled 
environmental variables (temperature, humidity & CO2 

content) is an alternative to achieve crops with high 
production rates, high quality, and low energy cost. Different 
strategies have been developed for temperature control to 
improve the efficiency of greenhouse crops since this variable 
strongly impacts the development of the plants [1]. One of 
these strategies is based on the development of algorithms that 
allow mitigating the effects of dead time when it is dominant 
on the process dynamics [2], according to the Smith predictor 
structures type for predictive control [3], modified Smith 
Predictor [4] and multivariable controllers for greenhouses [5]. 
With the use of these structures, the gain margin, the phase 
margin, and the bandwidth restrictions imposed by dead time 
systems have been improved [6]. 

Our research was meticulously conducted, focusing on the 
design of a robust controller based on the Quantitative 
Feedback Theory (QFT) and a structure from a Smith 
predictor structure for a dead-time system applied to 
temperature control of the greenhouse. This structure was 
chosen for its high stability based on the gain margin, the 
phase margin, and the rejection of disturbances in the system 
output. We began by modeling the temperature behavior 
inside a greenhouse and designing a robust QFT controller 
(Section II). The system stability and controller´s behavior 
against external disturbances, in contrast with a PID 
controller, were thoroughly validated. The proposed control 
strategy's performance was then inferred to demonstrate robust 
stability and rejection of disturbances with minimum effort of 
the control signal (Section III). Finally, we drew conclusions 
based on the comprehensive study (Section IV). 

II. METHODOLOGY 

A. Mathematical model identification 

Equation (1) defined a mathematical model that related the 
greenhouse's temperature gradient with the duty cycle applied 
to the AC-AC converter for a heating system. Besides, the 
parametric variation of the plant temperature and the system 
uncertainty space were quantified for the design of the QFT 
controller temperature.  

Therefore, Fig.1 shows a random binary excitation signal 
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(RBS), the greenhouse natural system, and the identified 
system response. Likewise, the RBS signal related to the input 
and output of the system and was configured with amplitude 
between [0.25 – 0.75] of the duty cycle of the PWM signal, 
applied to the AC-AC ON-OFF converter [7], with a 
bandwidth BW = 0.00468 Hz, which was selected from the 
response of the temperature to a step input signal of 50% of 
the PWM duty cycle applied to the AC-AC converter. The 
sampling frequency was Fs = 1, and the number of samples 
was 15000. 

 
Fig. 1. RBS signal for natural system and identified system. 

Considering the RBS signal shown in Fig. 1, first-order 
transfer functions with dead time were identified, where dead 
time is L = 120.5 s, the system time constant is T = 213.9 s, 
and the static system gain is K = 75.4. This model is 
represented by (1), which relates the temperature inside the 
greenhouse with the duty cycle of the PWM signal applied to 
the AC-AC ON-OFF converter. 
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B. QFT controller design 

The uncertainty space is one of the most relevant aspects 
and pillars for QFT controller design [8]. Hence, for the 
developed controller, an uncertainty interval was established 
for the static gain K, time constant T, and dead time L, listed in 
Table I, based on identification tests. Those tests are similar to 
the Mathematical model identification made in the previous 
section at different points of operation of the heating system at 
the greenhouse. Therefore, a family of plants was evaluated 
against a set of frequencies of interest between 0.0001 rad/s 
and 0.1 rad/s, considering the system's bandwidth. Thus, a 
phase [°] - magnitude [dB] representation of the plants set on 
the Nichols chart was obtained for each frequency. 

TABLE I 
PARAMETRIC UNCERTAINTY 

Parameter Lower limit Upper limit 

Static Gain K 60.32 90.48 

Time Constant T (s) 171.12 256.68 

Dead Time L (s) 96.4 144.6 

 
The performance of a controller with a conventional Smith 

predictor is affected by its sensitivity to the process parametric 

variation [9] and external disturbances [2]. However, dead 
time compensation techniques based on a modified Smith 
predictor scheme have been used successfully in the tuning of 
PID controllers with two degrees of freedom [10], auto-tuning 
models of PID controllers [11], and in PID controllers with 
systems that present variable dead time [12]. 

Hence, a robust design of a Smith predictor based on the 
consideration of the bandwidth and a quantitative approach of 
the compensator was proposed [13], taking on a structure 
grounded in the concept of the modified Smith predictor [14] 
for a system Pr with dead time L. The structure uses an 

estimated plant without delay r̂P in an internal loop with an 

estimated pure delay L̂ , which allows mitigating the effects of 
dead time to facilitate the design of controller G using a 
quantitative approach. Fig. 2 proposes a structure based on the 
Smith predictor concept for dead time. 

 
Fig. 2. Modified Smith predictor equivalent diagram. 

Thus, transfer function H (s) is given by (2), the equivalent 
plant Peq (s) is given by (3), and the system input-output rate 
y (s) / r (s) is given according to (4). 
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Moreover, a QFT controller considering the Smith predictor 
was designed for an uncertainty process. The choice of 

ˆˆ s L
rP e   is a critical factor because Q (s) degrades the system 

for each value H (s) takes in the uncertainty space. So this, one 

first algorithm was proposed for a plant set selection 
ˆˆ s L

rP e   

such that | Q (s)| ≤ md in the frequency range of interest of the 
controller 0 ≤  ≤ BW, where md is set to 3dB [14], 

additionally from the second algorithm, a single plant 
ˆˆ s L

rP e   

of the set was selected that satisfied the first algorithm and 
allowed to minimize the cost function given by (5), where 
nequals the number of frequencies of interest. A∙(Teq (j)) 

represents the model template area 
ˆˆ s L

rP e  , and A∙(T (j)) 

represents the nominal plant template Pr. 
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Therefore, the transfer function given by (6) was calculated 
using the algorithms proposed [14] for the frequency range in 
the matter. 

 
80.3ˆ ( )

195.3 1rP s
s


 

  (6) 

Since greenhouses are subject to external disturbances and 
present variation in the parameters due to different 
environmental conditions, two performance specifications 
were defined based on the recommended minimum robust 
stability of 5dB for gain margin and 45° for phase margin 
given by (7) [15] and the rejection of load disturbances in the 
temperature inside the greenhouse given by (8). 
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Hence, parameters u () and S () were quantified, either 
as constants or from transfer functions that represent the 
desired dynamics of the plant under a closed loop [16], [17]. 
The criterion used for robust stability was defined with 
u () = 1.3 [15]. In this way, the rejection of disturbances in 
the greenhouse was defined from the parameter S () given 
by (9) [18]. Therefore, this was determined as a transfer 
function that represents the desired dynamics of the plant 
before a disturbance. Consequently, a settling time of 1500 s 
was chosen for the output before a step-type disturbance as a 
condition of the sensitivity function of the system. The pole 
assignment method was applied to define the transfer function 
S ()[16]. 
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Firstly, an L (j) value must be obtained which fits the 
inequalities established in the performance specifications, 
where L (j) = G (j) ∙ P (j), based on the controller 
performance specifications given by (7) and (8), in addition, to 
the transfer functions that represent the parameters u () and 
S (). Thus, the control problem focused on determining a 
unique G (j) controller that meets all the performance 
specifications established by the plant with uncertainty P (j) 
in the frequency range of interest [19]. 

To solve the control problem, a quadratic inequality was 
proposed for each performance specification [20], as shown by 
(10) and (11). 
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The loop-shaping technique introduces a G (s) controller 

that modifies the loop function Lo until it complies with the 
constraints imposed by the contours of the performance 

specifications. This way, the unique controller jg e   that 

complies manages to take the function of the loop Lo on the 
contours of each specification [19]. Fig. 3 shows the response 
in the frequency of interest. This was achieved by adding 
poles and zeros to the Lo loop function until the desired 
response was reached [15]. The transfer function of the QFT 
controller is given by (12). 

 
Fig. 3. QFT Controller response for Lo. 
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The PID controller was designed from the transfer function 
Pr (s) and performance affixed indices for the QFT controller 
design associated with its transient response. Since Control 
System Toolbox in Matlab®, PID controller parameters were 
tuned, this is given by (13). An integrator, a complex zero at 
0.00196 ± 0.00775j, and a pole on P = -0.1 was added. 
Besides, the gain was set at K = 5.5×10-5. Proportional gain 
Kp = 0.0028, integral gain Ki = 5.184, derivative gain 
Kd = 0.835, and derivative filter constant Nd = 0.183 [21] was 
normalized on equation (14). This was based on parameters 
given by (13). 
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Fig. 4. Controller block diagram with Smith predictor structure. 
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Fig. 4 shows the block diagram that allows the QFT and 
PID controllers to be implemented. To implement the QFT 
controller, the transfer function given by (12) was introduced 
on the G (s) block, and to implement the PID controller, the 
transfer function given by (13) was introduced on the G (s) 
block. 

III. RESULTS AND DISCUSSION 

To begin with, an experimental system for real-time data 
acquisition of the greenhouse was implemented, in which the 
control action was coded into a signal by pulse width 
modulation (PWM) to determine on and off times on the solid-
state relay AC-AC converter. Likewise, in Matlab®, Simulink 
Desktop Real-Time, a real-time control algorithm was 
implemented to interact physically with the process. Hence, 
Tests were carried out to validate the system's stability and the 
controller's performance against external disturbances in 
reference to the greenhouse temperature. 

Fig. 5 displays the system response for 40°C. The system 
dynamic response presented an overshoot of less than 1%. 
Also, the settling time was approximately 1000 s, and the 
control signal remained close to 15% of the duty cycle. 

 
Fig. 5. QFT controller response at 40°C. 

 
Fig. 6. QFT and PID controllers response at 40°C. 

Likewise, Fig. 6 represents a conventional PID and QFT 
controller with a modified Smith predictor response at 40°C. 
Therefore, it is observed that the QFT controller presented an 
overshoot of less than 2%; besides that, a lower effort in the 
control signal and a fast response were noticed in comparison 
with the PID controller, which presented an overshoot of close 
to 3%, a more significant effort in the control signal and a 
slower response. The settling time of the QFT controller was 
close to 1000 seconds in contrast to the PID controller, which 

approached 1200 seconds. In addition, the QFT controller 
presented high sensitivity to noise in the sensor, while the 
derivative filter made the PID controller more robust. In the 
same way, both controllers showed an error in a steady state 
close to zero. Table II lists the performance indices for tests at 
40°C and 50°C. 

The QFT controller's response to an external temperature 
variation inside the greenhouse was validated. The greenhouse 
was subjected to a disturbance at 4000 s. Temperature 
disturbance is based on a turbine activation connected to the 
greenhouse, which forces the external wind circulation, 
causing the temperature inside the greenhouse to decrease 
suddenly. Fig. 7 shows the QFT and PID controller’s 
behavior. 

TABLE II 
PERFORMANCE INDICES BASED ON QFT AND PID CONTROLLER’S STABILITY 

Temperature 40°C 50°C 

Controller QFT PID QFT PID 

ts (s) 1000 1200 1050 1300 

Mp (%) 2 3 0 3 

Ep (°C)  0 0 0 0.5 

 

 
Fig. 7. System response in the presence of QFT and PID controller 

disturbances. 

TABLE III 
QFT AND PID CONTROLLERS’ INDICES PERFORMANCE IN THE PRESENCE OF 

EXTERNAL DISTURBANCES 

Temperature 40°C 

Controller QFT PID 

ts (s) 1000 1200 

Ep (°C) 850 960 

D  0 0 

 
Finally, it is appreciated that the QFT controller lasted 850 s 

to compensate for the disturbance, whereas the PID controller 
lasted 690 s. In addition, the QFT controller presented an 
abrupt control action without straining the actuator, whereas 
the PID controller presented a smoother response. Both 
controllers showed an error in a steady state close to zero after 
compensating for the disturbance. QFT controller control 
signal showed an increase of 10% to compensate for the 
temperature change, whereas the PID controller showed an 
increase of 13%. Table III shows indices performance for tests 
at 40°C of temperature. 
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IV. CONCLUSIONS 

The proposed controller applied to the range of uncertainty 
for the temperature system parameters quickly mitigated the 
effects of the dead time, which favored the system tuning and 
its stability. Likewise, the effects of external disturbances and 
changes in the point of operation with minimum effort of the 
control signal were mitigated. It also kept within controller 
performance specifications such as settling time and the 
overshoot. Final results showed that the dynamic response of 
the QFT controller improved by 12%, with a decrease of 1% 
in the overshoot and 3% in the effort of the control signal, 
compared to PID controller results. Lastly, implementing an 
experimental system for acquiring real-time data from the 
greenhouse allowed the demonstration of high sensitivity to 
noise in QFT controller sensing, in contrast to the low 
sensitivity of the sensing in the PID controller. This condition 
raised the need for a more exhaustive study to improve the 
sensitivity in QFT controllers. 
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