
On the Performance Improvement of the
Optimal-Sampling-inspired Self-Triggered Control

at Implementation Stage
Mejoramiento del Desempeño del Control Auto-Disparado
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Abstract—The self-triggered control includes a sampling strat-
egy that focuses on decreasing the use of computational resources
(processor and network) while preserving the same control
performance as the one obtained via a controller with periodic
sampling. Within this framework it has been developed recently
a self-triggered control technique inspired by a sampling pattern
whose optimal density minimizes the control cost, this approach
is called “optimal-sampling inspired self-triggered control”. How-
ever, the strategies used to implement it on microprocessor-
controlled systems working under perturbation are still unclear;
this paper addresses some techniques to organize and improve
the implementation on actual controllers. The proposed solution
comprises both the formulation of two algorithms to organize
the implementation and the insertion of a closed-loop observer
to deal with the perturbation that normally appears on real
plants. Regarding the former, certain computationally expensive
processes involved in the implementation of this control technique
are treated through their replacement by lightweight polynomials
fitted at design stage. Simulations and practical experiments
confirm the solution is effective and there could be an open
research topic concerning observation in optimal-sampling self-
triggered control strategies.

Index Terms—Event-driven control, aperiodic sampling, real-
time embedded control systems, aperiodic observer.

Resumen—El control auto-disparado incluye una atractiva
estrategia de muestreo que se enfoca en disminuir el uso de
recursos computacionales (procesador y red) mientras se preserva
el mismo rendimiento de control que el obtenido a través de
un controlador con muestreo periódico. Dentro de este marco,
se ha desarrollado recientemente una técnica de control auto-
disparado inspirada en un patrón de muestreo cuya densidad
óptima minimiza el costo de control, se llama “control auto-
disparado inspirado en muestreo óptimo”. Sin embargo, las
estrategias utilizadas para implementarlo en sistemas controlados
por microprocesadores que funcionan bajo perturbación aún
no son claras; este documento aborda algunas técnicas para
organizar y mejorar la implementación sobre controladores
reales. La solución propuesta comprende la formulación de
dos algoritmos para organizar la implementación y también la
inserción de un observador de lazo cerrado para lidiar con las
perturbaciones que normalmente aparecen en las plantas reales.
En cuanto a los algoritmos, ciertos procesos computacionalmente
costosos implicados en su implementación son tratados mediante
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la sustitución por polinomios ligeros ajustados en la fase de
diseño. Tanto simulaciones como experimentos confirman que la
solución es efectiva y que podrı́a haber un tema de investigación
abierto relacionado con la observación en las estrategias de
control auto-disparado con muestreo óptimo.

Palabras Claves—Control manejado por eventos, muestreo
aperiódico, sistemas de control empotrados de tiempo real,
observador aperiódico.

I. INTRODUCTION

NOWADAYS controllers are implemented on digital sys-
tems consisting of microprocessors and communication

networks. Among some of the alternatives that have efficient
resource consumption in a nonperiodic fashion are the self-
triggered control techniques (STC), initially proposed by [1]–
[5]. They solve the fundamental problem of determining
both optimal sampling and efficient processing/communication
strategies. Each time the control task is triggered, both the
time the next sampling will be performed (sampling rule) and
the control action which should be maintained until this event
happens, are estimated.

Several approaches aimed at solving the problem of deter-
mining optimal sampling rules in STC have been addressed
recently. An optimal sampling pattern proposed in [6] in-
spired the approach in [7], which is analyzed in the present
study. This technique describes a sampling rule that generates
approximated control actions by solving the continuous-time
LQR problem [8] at each sample time. The performance
guarantee is based on a number of samples over a time
interval with a given sampling constraint. The sampling time is
calculated by the derivative of a continuous-time LQR problem
and the rule produces smaller sampling times while the control
action has more variation.

Though the optimal-sampling in [6] and [7] has standard
cost lower than the one obtained by periodic sampling tech-
niques, and even than other optimal-sampling approaches i.e.
[9], [10], it has many weaknesses. Since the research is still
new there are many open topics, among which two stand
out: (a) clarifying and organizing the implementation on real
microprocessor systems, and (b) adapting the approach to
cases with disturbances.
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To solve problem (a), in [7] both a simulated and an exper-
imental set-ups are described. However, a deeper explanation
of the paradigm that a designer of control systems should use
to put this approach on a microprocessor-based system is not
shown.

With regard to problem (b) the approach in [6] could be
restated by inserting robustness to uncertainty in the approach
by developing new theory, or on the other hand by using
observation techniques. A settlement applying observation in
presence of unknown disturbances but on a different STC
strategy to that used herein, is presented in [11], [12].

To overcome problems (a) and (b), the contribution of
this paper is twofold. First, two algorithms are formulated to
organize and synthesize the implementation of the approach
in [7]. Second, a time-varying closed-loop observer is applied
on the approach in [7] in order to make it less sensitive to
noise.

The rest of the paper is organized as follows. Section
II summarizes the theory on optimal-sampling-inspired self-
triggered control (OSISTC). Section III presents the insertion
of state observation into the self-triggered control and also the
strategies to describe the implementation. Section IV shows
the simulations and experiments on a selected plant. At the
end, Section V performs the analysis of results and Section
VI concludes the article.

II. REVISITING THE OPTIMAL-SAMPLING-INSPIRED
SELF-TRIGGERED CONTROL

This section summarizes the theory on OSISTC extracted
from the original works in [6] and [7], and included for better
understanding of the subject of study.

A. Continuous-time dynamics

Consider the linear time-invariant system (LTI) represented
in continuous-time by{

ẋ(t) = Acx(t)+Bcu(t)
y(t) =Cx(t)

, given x(0) = x0 (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the continuous
control input signal. Ac ∈ Rn×n and Bc ∈ Rn×m describe the
dynamics of the system, and C ∈ Rq×n is the weight matrix
used to read the state; x0 is the initial value of the state.

B. Sampling

The control input u(t) in (1) is piecewise constant, meaning
that it remains with the same value between two consecutive
sampling instants, thus

u(t) = u(k) ∀t ∈ [tk−1, tk), (2)

where the control input u(k) is updated at discrete times k ∈N
and the sampling instants are represented by tk ∈R. Consecu-
tive sampling instants are separated by sampling intervals τk,
and the relationship between instants and intervals is

τk = tk+1− tk, where tk =
k−1

∑
i=0

τi for k ≥ 1. (3)

C. Discrete-time dynamics

In periodic sampling, a constant sampling interval τ is con-
sidered. The continuous-time dynamics from (1) is discretized
using methods taken from [8] by

Ad = eAcτ , Bd =
∫

τ

0
eAc(τ−t) dt Bc, (4)

resulting in the discrete-time LTI system{
x(k+1) = Adx(k)+Bdu(k)

y(k) =Cx(k)
, given x(0) = x0 (5)

where the state x(k) is sampled at tk.
The location of the system poles (or eigenvalues of the

dynamics matrices Ac, Ad) is fundamental to determine/change
the stability of the system [8]. Poles in continuous-time pc
become poles in discrete-time pd through

pd = epcτ . (6)

State-feedback control by means of pole placement requires
to assign the desired closed-loop poles by hand. Nevertheless,
the LQR technique allows to place the poles automatically and
optimally. LQR is used by OSISTC at each tk considering τk
as the sampling time.

D. Linear quadratic regulator

The LQR optimal control problem allows to find an optimal
input signal that minimizes the continuous-time and discrete-
time infinite-horizon cost functions in (7) and (8) respectively.

Jc =
∫

∞

0
(xT

(t)Qcx(t)+2xT
(t)Scu(t)+uT

(t)Rcu(t))dt, (7)

Jd =
∞

∑
0
(xT

(k)Qdx(k)+2xT
(k)Sdu(k)+uT

(k)Rdu(k)) (8)

Regarding dimensionality in (7) and (8), the weight matrices
Qc,Qd � 0 ∈ Rn×n are positive semi-definite, Rc,Rd � 0 ∈
Rm×m are positive definite, and Sc,Sd ∈ Rn×m. Refer to [13]
to know about the transformation of the weight matrices from
their continuous forms Qc, Rc, Sc to their discrete versions Qd ,
Rd , Sd .

E. Optimal sampling-inspired self-triggered control

The approach in [7] involves designing both a sampling
rule as a piecewise control input, such that the LQR cost is
minimized. Additionally, the periodicity of execution of the
controller is relaxed so that the consumption of resources is
diminishing. Then, the sampling rule is

τk = τmax
1

τmax
η
|Kc(Ac +BcKc)x(k)|α +1

(9)

where an upper bound on the sampling intervals is given
by τmax; similarly η modifies the degree of density of the
sampling sequence (smaller η yields denser sampling instants
and vice versa). By minimizing the continuous-time cost
function (7) an optimal continuous-time feedback gain Kc
is found once. According to [6] and [7] there exist optimal
settings for the exponent α ≥ 0 which influences the density
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ω(t)u(t)

u(k)

y(k)

τk

y(t) Next sample at
tk+1 = tk + τk

Fig. 1. Original architecture of the self-triggered feedback control. Solid lines
denote continuous-time signals and dashed lines denote signals updated only
at each sampling time.

of the samples set; with α = 0 the sampling becomes regular
(periodic).

Additionally, from [7] the piecewise optimal control signal
expressed in linear state feedback form is

u(k) =−Kd(τk)x(k), (10)

where Kd(τk) is calculated at each controller execution τk. Its
value is obtained by solving the discrete-time LQR problem
(8) considering a fixed sampling period τk.

III. ON THE IMPLEMENTATION OF OSISTC

The model of the proposed approach as well as the guide-
lines for its implementation are explained in this section. This
corresponds to the main contribution of the work.

A. Original OSISTC architecture

Figure 1 is used to ensure better understanding of the
original OSISTC scheme. In this configuration the output of
the plant y(t) is sampled by the self-triggered sampler at each
τk; the measured state y(k) is used by both the event scheduler
and the controller. The event scheduler is responsible for
calculating when the next sampling time tk+1 will be executed
by means of (9). The controller computes the control action
using both (2) and (10). The control input u(k) is kept constant
along the entire sampling interval τk in a zero-order hold
manner.

In the same Figure 1, the bounded exogenous disturbances
ω(t) are not treated in any way, causing noisy states and
affecting the system performance. With respect to both the
event scheduler and the controller, they base their procedures
on the measured state y(k) (or on the error e(k) when there is
a reference). Thus, the insertion of noise into the states leads
to the emergence of uncertainty in both the linear piece-wise
control u(k) and the sampling interval τk.

B. Discrete-time observer

An observer constitutes a computer copy of the observed
dynamic system (5) whose predicted states x̂(k) converge to the
real states x(k) by reducing the observer’s output error ẽ(k). The

Bd

x(k+1)
z−1I

x(k)
C

Ad

Dynamical process

Controller

y(k)−Kdu(k)

State observer

x̂(k)

Bd

x̂(k+1)
z−1I C

ŷ(k)

Ad
ẽ(k)û(k)

Ld

Fig. 2. Discrete-time Luenberger state observer

ω(t)

u(k)

u(t)

x̂(k)

τk

y(k)

y(t)
Next sample at
tk+1 = tk + τk

Fig. 3. Proposed architecture of the self-triggered feedback control with
observation. Solid lines denote continuous-time signals and dashed lines
denote signals updated only at each sampling time.

discrete-time Luenberger observer proposed in [14] and shown
in Fig. 2 is a state estimator which works properly in presence
of unknown disturbances; see [8] for better understanding.
Then, the system in (5) is reformulated as{

x̂(k+1) = Ad x̂(k)+Bdu(k)+Ld
(
y(k)− ŷ(k)

)
y(k) =Cx(k)

, (11)

where x̂(k+1) ∈ Rn is the state estimate and ŷ(k) ∈ Rq is the
output estimate. Ld ∈ Rn×q is the observer gain matrix.

In (11), if the pair (Ad ,C) is completely observable, the
dual system (A′d ,B

′
d ,C

′,D′) is completely reachable. Then, an
observer gain matrix Ld for the dual system can be designed
and the eigenvalues (poles) of (A′d −C′Ld) can be arbitrarily
placed [14]. Consider that the eigenvalues of a matrix (A′d −
C′Ld) are equal to the eigenvalues of its transpose (Ad−L′dC).

C. Proposed OSISTC architecture based on observer

Figure 3 shows the proposed self-triggered architecture
in which the use of a discrete-time observer stands out to
deal with noise ω(t). Assuming that the pair (Ad(τk),C) is
observable along the set of all possible sampling intervals τk,
the eigenvalues of (Ad(τk)−L′d(τk)

C) can be placed arbitrarily
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[14]. Notice that the dynamics now depends on τk because
Ad(τk) is a time varying matrix. The discrete poles in (6) are
also dependent on the sampling interval τk, as in

pd(τk)
= epcτk . (12)

In this context the observer needs to solve a new pole
placement at each execution, since the discrete dynamics
matrices and the discrete poles are dependent on the sampling
interval τk. This implies that the observer has a different
gain matrix Ld(τk) at each execution. Then, considering the
changing dynamics, the system in (11) becomes{

x̂(k+1) = Ad(τk)x̂(k)+Bd(τk)u(k)+Ld(τk)

(
y(k)− ŷ(k)

)
y(k) =Cx(k)

, (13)

where Ad(τk) and Bd(τk) are discretized matrices for a sampling
interval τk, u(k) is the linear piecewise control action calculated
by (10), and Ld(τk) ∈R

n×q is the gain matrix of the sampling-
dependent observer.

D. Problems considered
There are several drawbacks in assembling both the OSISTC

controller and the time-varying observer on a real-time control
system.

The first issue has to do with calculation of the controller
gain matrix Kd(τk) in (10) by solving the problem in (8)
through recursive computation of the discrete algebraic Ricatti
equation (DARE) until convergence [8]. The second issue is
the pole placement solved by Ackermann’s formula [15] in
order to obtain the observer gain matrix Ld(τk).

Both processes are computationally expensive and must be
performed at each controller execution. If the execution time of
the control task is too close to the minimum sampling interval,
undesirable effects such as jitter could appear [16]. Particularly
in OSISTC, the worst case scenario comes out when the rate
of change of the control action is maximal, causing a highest
density in the emergence of samples (minimum τk).

E. Set of sampling intervals T
The set of sampling intervals T ∈ R1×s within a closed

interval [τmin; τmax] is

T = {τmin,τmin + τg,τmin +2τg, · · · ,τmax}, (14)

where τg is the sampling granularity defined as the least
increase-unit for the sampling intervals. Each element of the
set can be addressed in this way

τh = T[h] ∀h ∈ N : 1≤ h≤ s (15)

being s the length of T .
The minimum and maximum sampling times, τmin and τmax,

as well as τg are chosen following the conditions detailed in
[7] 

β α

η
≤ 1

τmin
− 1

τmax
, β := sup

x∈X
|Kc(Ac +BcKc)x|

τRTOS ≤ τg,

(16)

where X is the entire state space taken from the physical
constraint of the plant, and τRTOS is the sampling granularity of
the real-time operating system (RTOS) in which the technique
will be implemented.

F. Strategy to calculate the controller gain matrix Kd(τk)

The gain Kd(τh) is calculated by brute force for each hth

element of the set T in (14) by the discrete-time LQR problem
(8). Therefore, we obtain a total of s controller gain matrices
Kd(τh) ∈ Rm×n that have the form

Kd(τh) = dlqr
(
Ad(τh),Bd(τh),Qd(τh),Rd(τh)

)
Kd(τh) =


kd(τh)

11 · · · kd(τh)
1n

...
. . .

...
kd(τh)

m1 · · · kd(τh)
mn

 . (17)

Regrouping the elements of all gain matrices according to
their position yields a group SKd that is m · n training sets
long, where m and n are the dimensions of inputs and states
respectively, then

SKd = {[kd(τ1)
11 , · · · ,kd(τs)

11 ], · · · , [kd(τ1)
1n , · · · ,kd(τs)

1n ], · · · ,

[kd(τ1)
m1 , · · · ,kd(τs)

m1 ], · · · , [kd(τ1)
mn , · · · ,kd(τs)

mn ]}.
(18)

Each training set in (18) is defined in R1×s and used
to perform a polynomial curve fitting in order to find the
coefficients θ of the d-degree polynomials Ki j(τk). Therefore,
we have a total of m · n polynomials each one following the
form

Ki j(τk) = θ
(i j)
1 τ

d
k +θ

(i j)
2 τ

d−1
k + · · ·+θ

(i j)
d τk +θ

(i j)
d+1, (19)

where superscript (i j) indicates the belonging of coefficients
θ (i j) to polynomial Ki j(τk); i-row and j-column show the
position of polynomials into the gain matrix. Note the change
of τk instead of τh since the former is the current sampling
interval calculated online through equation (9) on a real
controller. Thus, (17) to (19) become

Kd(τk) =

K11(τk) · · · K1n(τk)
...

. . .
...

Km1(τk) · · · Kmn(τk)

 , (20)

where

K11(τk) = θ
(11)
1 τ

d
k +θ

(11)
2 τ

d−1
k + · · ·+θ

(11)
d τk +θ

(11)
d+1

K1n(τk) = θ
(1n)
1 τ

d
k +θ

(1n)
2 τ

d−1
k + · · ·+θ

(1n)
d τk +θ

(1n)
d+1

Km1(τk) = θ
(m1)
1 τ

d
k +θ

(m1)
2 τ

d−1
k + · · ·+θ

(m1)
d τk +θ

(m1)
d+1

Kmn(τk) = θ
(mn)
1 τ

d
k +θ

(mn)
2 τ

d−1
k + · · ·+θ

(mn)
d τk +θ

(mn)
d+1 .

G. Strategy to calculate the observer gain matrix Ld(τk)

It is a process similar to that described in subsection III-F.
All possible observer gain matrices L(τh) are evaluated offline
as functions of sampling intervals τh.

The error dynamics of the observer is given by the poles
of
(
Ad(τh)−Ld(τh)C

)
. A rule of thumb considers to place the

observer poles five to ten times farther to the left of s-plane
than the dominant poles of the system.

By computing Ad(τh) through (4), assigning statically the
continuous-time poles and discretizing them by (6) in order to
have the vector Pd(τh), and finally considering C which remains
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constant, we obtain a total of s observer gain matrices Ld(τh) ∈
Rn×q by the poles placement method in [15] with the form

Ld(τh) = ackermann
(
Ad(τh)

T ,CT ,Pd(τh)
T )

Ld(τh) =


ld(τh)

11 · · · ld(τh)
1q

...
. . .

...
ld(τh)

n1 · · · ld(τh)
nq

 . (21)

Using the same regrouping criterion as in (18) a group SLd ,
n ·q training sets long, is obtained

SLd = {[ld
(τ1)
11 , · · · , ld(τs)

11 ], · · · , [kd(τ1)
1q , · · · ,kd(τs)

1q ], · · · ,

[kd(τ1)
n1 , · · · ,kd(τs)

n1 ], · · · , [kd(τ1)
nq , · · · ,kd(τs)

nq ]}.
(22)

Subsequently a total of n ·q polynomials are calculated with
the form

Li j(τk) = θ
(i j)
1 τ

d
k +θ

(i j)
2 τ

d−1
k + · · ·+θ

(i j)
d τk +θ

(i j)
d+1, (23)

such as in (19). Finally it is obtained

Ld(τk) =

L11(τk) · · · l1q(τk)
...

. . .
...

Ln1(τk) · · · lnq(τk)

 , (24)

where

L11(τk) = θ
(11)
1 τ

d
k +θ

(11)
2 τ

d−1
k + · · ·+θ

(11)
d τk +θ

(11)
d+1

L1q(τk) = θ
(1q)
1 τ

d
k +θ

(1q)
2 τ

d−1
k + · · ·+θ

(1q)
d τk +θ

(1q)
d+1

Ln1(τk) = θ
(n1)
1 τ

d
k +θ

(n1)
2 τ

d−1
k + · · ·+θ

(n1)
d τk +θ

(n1)
d+1

Lnq(τk) = θ
(nq)
1 τ

d
k +θ

(nq)
2 τ

d−1
k + · · ·+θ

(nq)
d τk +θ

(nq)
d+1 .

Then, on each execution of the actual controller, after
calculating the next sampling interval τk via (9), each element
of the observer gain matrix is computed through a different
polynomial in the matrix Ld(τk).

H. Implementation guidelines

Through Algorithm 1 what was said in subsections III-F and
III-G is summarized; this program can be performed offline by
any numerical computing programming language. Algorithm
2 shows how to implement OSISTC on any processor with
reduced performance features.

IV. RESULTS

An experiment on a real plant is presented in order to
illustrate the theory introduced in the previous section.

A. Plant

The experimental plant with form (1) is the same electronic
double integrator circuit as the one used in [7], so advise
with that document for further information. The state space
representation is

Ac =

[
0 −23.81
0 0

]
, Bc =

[
0

−23.81

]
, C =

[
1 0

]
.

(25)

Data: Ac,Bc,C,Qc,Rc,τmin,τmax,τg,α,β ,η ,Pc
Result: Kc,Kd(τk),Ld(τk)

Kc = f (Ac,Bc,Qc,Rc) by continuous LQR (7);
T = f (τmin,τmax,τg) by (14) and (16);
for τh ∈ T do

Compute Ad(τh),Bd(τh),Qd(τh),Rd(τh) by (4);
Kd(τh) = f

(
Ad(τh),Bd(τh),Qd(τh),Rd(τh)

)
by discrete

LQR (17);
Compute Pd(τh) by (6);

Ld(τh) = f
(

AT
d(τh)

,CT ,Pd(τh)

)
by Ackermann (21);

end
Create SKd based on all Kd(τh) by (18);
Create SLd based on all Ld(τh) by (22);
for i≤ m and j ≤ n do

Ki j(τk) = f
(
SKd(i· j)

)
by polynomial curve fitting;

end
for i≤ n and j ≤ q do

Li j(τk) = f
(
SLd(i· j)

)
by polynomial curve fitting;

end
Create Kd(τk) by ordering all Ki j(τk) as in (20);
Create Ld(τk) by ordering all Li j(τk) as in (24);

Algorithm 1: Offline design

Data: Ac,Bc,C,Kc,τmax,τg,α,β ,η ,Kd(τk),Ld(τk)

Result: τk,u(k)
Initialization of hardware, RTOS and variables;
x(k) := read input();
τk := f

(
τmax,Kc,α,β ,η , x̂(k)

)
by (9);

Set RTOS to trigger next time after τk;
Calculate Kd(τk) by (20);
u(k) := f

(
Kd(τk), x̂(k)

)
by (10);

Set actuator with u(k);
Calculate Ld(τk) by (24);
Compute Ad(τk),Bd(τk) by (4);
x̂(k) := f

(
Ad(τk),Bd(τk),Kd(τk),Ld(τk), x̂(k),x(k)

)
by (13)

Algorithm 2: Online implementation

In Table I most important configurations used to design both
controller and observer are detailed. These values have been
based on recommendations from the literature in [7]. Note that
the poles of the observer have been chosen to be fast enough
so that they do not slow down the dynamics of the plant

TABLE I
EXPERIMENT SETTINGS

Symbol Description Value

Qc States weighting matrix 0.0025 ·
[

1 0
0 1

]
Rc Control weighting matrix 0.1

τmin Minimum sampling time 20ms
τmax Maximum sampling time 60ms
τg Sampling granularity 1ms
α Density of the samples set 0.667
β - 9.4
η Density degree of the sampling seq. 0.11
Pc Observer continuous-time poles [−50+2 j,−50−2 j]
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Fig. 4. Gains polynomial fitting: controller (top), and observer (bottom)

B. Controller and observer

Algorithm 1 has been followed step by step to perform
the offline design. In Fig. 4 the gains of both controller and
observer evaluated for the set of sampling intervals, are shown
by circles. Likewise, fitted curves (continuous lines) roughly
describe the behaviour of these gains. Additional numerical
results are summarized next:
• Continuous-time feedback gain

Kc = [0.1581 −0.5841].

• Controller gain matrix which consists of two polynomials,
as in

Kd(τk) = [−0.8203τk +0.1533 1.819τk−0.5778].

• Observer gain matrix formed by two polynomials, as in

Ld(τk) = [10.2521τk +1.431 14.094τk−1.5081]T .

C. Implementation on a processor

The development platform comprises the digital signal con-
troller (DSC) dsPIC33FJ256MC710A from Microchip which
internally runs the Erika real-time kernel. To learn more about
this environment, it is recommended to see the original work
in [18] and its references, and the same implementation in [7].

The self-triggered controller uses rule (9) to calculate when
it will activate itself next time; this value is used to set the
RTOS to trigger the next sampling instant. Other functions
of the controller are to read the states of the plant x(k)
through the DSC analog/digital converter, to estimate the states
x̂(k) through the observer, and to compute the control action
u(k) which is applied directly to the plant via pulse width
modulation (PWM).

Algorithm 2 has been used to perform the implementation
that works on the microcontroller. To calculate the controller
gain matrix, two first-degree polynomials that are functions
of τk are represented as K11(τk) and K12(τk), grouped into
Kd(τk). This is done instead of minimizing DARE. Finally, the
observer gain matrix is replaced by a pair of first-degree poly-
nomials L11(τk) and L21(τk), framed within Ld(τk). This is done
instead of using a pole placement method i.e. Ackermann.
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Fig. 5. Behavior of OSISTC in simulation
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Fig. 6. Implementation of OSISTC with no observer [7]

V. DISCUSSION

Figures 5 to 7 show the states evolution and the sampling
pattern both in simulation and actual implementations when
OSISTC is subjected to follow a reference. The establishment
times, overshoots, and steady-state errors are almost similar
for all cases.

The sampling intervals in the simulation (Fig. 5) lie within
the range [31; 60]ms, in the real system without observer
(Fig. 6) are within [32; 59]ms, and in the real system with
observer (Fig. 7) within [31; 60]ms. The red lines in the
sampling sequence graphs correspond to the average sampling,
explained later through equation (26).

The observer in Fig. 7 provides noise-free states that sta-
bilize the triggering of sampling periods τk at the same time.
The implementation without observer in Fig. 6 tends to shake
in steady state since its states have noise, which causes the
oscillation of the triggering of sampling periods.

The average sampling metric τav in [7] establishes

τav =
1
N

N−1

∑
k=0

τk, (26)

where N is the number of samples within the experi-
ment/simulation time; larger values of τav indicate less re-
source utilization. In the simulation τavS = 55.7ms, in the
implementation without observer τavNO = 51.3ms, and in the
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implementations with and without observer, with τmin = 3ms, τmax = 30ms
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implementation with observer τavO = 54.1ms. The average
sampling τavNO is less than τavO, which means that the
implementation with observer has better performance than the
implementation presented in [7] which has no observer, since
it uses less processing resources.

Figure 8 shows how the sampling average periods behave
when the density degree is changed as long as the guarantee
in (16) is maintained. The behavior τavO > τavNO is recurrent,
which allows corroborating the results obtained above.

VI. CONCLUSIONS

Some techniques applied at the implementation stage to
improve the performance of the method in [7] were presented.
A polynomial fitted offline to calculate the discrete-time
controller gains, was used to replace the online discrete-time
LQR problem. A time-varying closed-loop observer has been
implemented by polynomial fitting techniques while avoiding
the online use of the Ackermann pole placement method.

Simulations and experiments have been confirmed the so-
lution is effective and there could be an open research topic
regarding observation techniques in OSISTC. There are in-
teresting performance measures in the literature which could
become future work for this study; metrics from [7] and [10]

would allow further evaluation on a real system. A comparison
between the implementation with and without observer can be
made to determine the true contribution of the latter.
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