VARIACIÓN ESTACIONAL DE LA PIRITIZACIÓN DE METALES EN SEDIMENTOS DE UN LAGOON (LAGUNA DE VIXÁN - NO PENÍNSULA IBÉRICA)

Contenido principal del artículo

Pedro Fraga-Santiago
X Otero
A Pérez-Alberti

Resumen

La biodisponibilidad de los metales pesados ha sido ampliamente estudiada en los últimos años, debido fundamentalmente a su toxicidad para los ecosistemas naturales y para los seres vivos. En este trabajo, se estudió el efecto estacional sobre el proceso de piritización del Fe, Mn y dos metales traza biolimitantes (Cu y Co) en los sedimentos de la laguna de Vixán (NO de la Península Ibérica). Los resultados muestran una intensa piritización del Fe y Mn (en general >60%) en los núcleos estudiados en ambas épocas del año 2011 (marzo y agosto). El Cu y Co presentaron un comportamiento diferente, mostrando una marcada variación estacional en superficie y una intensa piritización en profundidad (>25 cm).

Detalles del artículo

Cómo citar
VARIACIÓN ESTACIONAL DE LA PIRITIZACIÓN DE METALES EN SEDIMENTOS DE UN LAGOON (LAGUNA DE VIXÁN - NO PENÍNSULA IBÉRICA). (2019). Ciencia, 20(3), 197-208. https://doi.org/10.24133/ciencia.v20i3.1511
Sección
ARTÍCULOS
Biografía del autor/a

Pedro Fraga-Santiago, Universidad de Santiago de Compostela

Departamento de Edafología y Química Agrícola, Facultad de Biología

X Otero, Universidad de Santiago de Compostela

Departamento de Edafología y Química Agrícola, Facultad de Biología

A Pérez-Alberti, Universidad de Santiago de Compostela

Departamento de Geografía, Facultad de Geografía e Historia

Cómo citar

VARIACIÓN ESTACIONAL DE LA PIRITIZACIÓN DE METALES EN SEDIMENTOS DE UN LAGOON (LAGUNA DE VIXÁN - NO PENÍNSULA IBÉRICA). (2019). Ciencia, 20(3), 197-208. https://doi.org/10.24133/ciencia.v20i3.1511

Referencias

1 Adriano, D. C. (2001). Trace Elements in Terrestrial Environments. Springer.
2 Arienzo, M., Toscano, F., Di Fraia, M., Caputi, L., Sordino, P., Guida, M., . . . Ferrara, L. (2014). An assessment of contamination of the Fusaro Lagoon (Compania Province, southern Italy) by trace metals. Environ Monit Assess, 186, 5731-5747.
3 Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1-23.
4 Botsou, F., Godelitsas, A., Kaberi, H., Mertzimekis, T. J., Goettlicher, J., & Scoullos, M. (2015). Distribution and partitioning of major and trace elements in pyrite-bearing sediments of a Mediterranean coastal lagoon. Chemie der Erde, 75, 219-236.
5 Caille, N., Tiffreau, C., Levyal, C., & Morel, J. L. (2003). Solubility of metals in an anoxic sediment during prolonged aeration. Science of Total Environment, 301(1-3), 239–250.
6 Calmano, W., Hong, J., & Förstner, U. (1993). Binding and remobilisation of heavy metals in contaminated sediment affected by pH and redox potential. Water Science and Technology, 28, 223-235.
7 Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., & Billon, G. (2011). Trace metal behaviour in riverine sediments: role of organic matter and sulphides. Applied Geochemistry, 26, 80-90.
8 Cillero, C. (2013). Identificación y definición del estado de conservación de humedales lagunares de Galicia y su intengración en el sistema territorial. Tesis Doctoral. Universidad de Santiago de Compostela.
9 Cox, M. E., & Preda, M. (2005). Trace Metal Distribution Within Marine and Estuarine Sediments of Western Moreton Bay, Queensland, Australia: Relation to Land Use and Setting. Geographical Research, 43(2), 173-193.
10 Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Analytica Chimica Acta, 363, 45-55.
11 de Wit, R., Stal, L. J., Lomstein, B. A., Herbert, R. A., van Gemerden, H., Viaroli, P., . . . Heijs, S. K. (2001). ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems. Continental Shelf Research, 21, 2021-2041.
12 Domínguez, J., Otero, M., & Vidal, M. (2006). Guía de las aves del Parque Natural del Complejo Dunar de Corrubedo y Lagunas de Carregal y Vixán. Xunta de Galicia.
13 Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.
14 Erwin, K. L. (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manage, 17, 71-84.
15 Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S., & Jin, S. (2014). Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. The journal of Physical Chemestry, 118, 21347-21356.
16 Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Science of Total Environment, 330, 115–129.
17 Förstner, U. (1979). Sources and sediment associations of heavy metals in polluted coastal regions. Physics and Chemistry of the Earth, 11, 849-866.
18 Förstner, U., Ahlf, W., & Calmano, W. (1989). Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: combined effects of salinityand redox potential. Marine Chemistry, 28, 145-158.
19 Fortin, D., Leppard, G., & Tessier, A. (1993). Characteristic of lacustrine diagenic iron oxyhydroxides. Geochimica et Cosmochimica Acta, 57, 4391-4404.
20 Huerta-Díaz, M. A., & Morse, J. W. (1990). A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29, 119-144.
21 Huerta-Díaz, M. A., & Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681-2702.
22 Jain, C. K. (2003). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38, 569-578.
23 Kersten, M., & Förstner, U. (1986). Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology, 18, 121-130.
24 Kostka, J. E., & Luther, I. G. (1994). Partitioning and speciation of soil phase iron in saltmarsh sediments. Geochimica et Cosmochimica Acta, 58, 1701-1710.
25 Kostka, J. E., & Luther, I. G. (1995). Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry, 29, 159-181.
26 Louma, S. N. (1983). Bioavailability of trace metals to aquatic organism-a review. Science of Total Environment, 28, 1-22.
27 Lyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: newinsights from modern euxinic marine basins. Geochimica et Cosmochimica, 70, 5698-5722.
28 Merian, E., & Clarkson, T. (1991). Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance. VCH.
29 Morse, J. W., & Luther III, G. W. (1999). Chemical influences on trace metal–sulfide inter-actions in anoxic sediments. Geochimica et Cosmochimica, 63, 3373-3378.
30 Müller, A. (2002). Pyritization of iron and trace metals in anoxic fjord sediments (Nordåsvannet fjord, Western Norway). Applied Geochemistry, 17, 923-933.
31 Neumann, T., Rausch, N., Leipe, T., Dellwig, O., Berner, Z., & Böttcher, E. (2005). Intensepyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea. Geochimica et Cosmochimica, 69, 3619-3630.
32 Nicholson, F. A., Smith MCIWEM, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2006). Quantifying heavy metal inputs to agricultural soils in England and Wales. Water and Environment Journal, 20, 87–95.
33 Orkun, I. D., Galip, S., Demet, G. K., Yilmaz, T., & Cagatayhan, B. E. (2010). Speciation and implications of heavy metal content in surface sediments of Akyatan Lagoon-Turkey. Desalination, 260, 199-210.
34 Otero, X. L., & Macías, F. (2002). Variation with deph and season in metal sulfides in salt marsh soils. Biogeochemistry, 61, 247-268.
35 Otero, X. L., & Macías, F. (2003). Spatial variation in pyritization of trace metals in salt-marsh soils. Biogeochemistry, 62, 59-86.
36 Otero, X. L., Ferreira, T. O., Huerta-Díaz, M. A., Partiti, C., Souza Jr, V., Vidal-Torrado, P., & Macías, F. (2009). Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananeia - SP, Brazil). GeodermaGeoderma, 148, 318-335.
37 Otero, X. L., Sánchez, J. M., & Macías, F. (2000). Bioaccumulation of heavy metals in thionic fluvisols by a marine polychaete (Nereis diversicolor): The role of metal sulfide. Journal of Environmental Quality, 29, 1133-1141.
38 Otero, X. L., Vidal-Torrado, P., Calvo de Anta, R., & Macías, F. (2005). Trace elements in biodeposits and sediments from musell culture in the ría de Arousa (Galicia-NW Spain). Environmental Pollution, 136, 119-134.
39 Pulgar, I. (2004). Guía de la flora del Parque Natural del Complejo Dunar de Corrubedo y Lagunas de Carregal y Vixán. Xunta de Galicia.
40 Quevauviller, P., Rauret, G., Lopez-Sanchez, J. -F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. The Science of the Total Environment, 205, 223-234.
41 Raiswell, R., & Canfield, D. E. (2012). The iron biogeochemical cycle past and present. Geochemical Perspectives.European Association of Geochemistry., 1(1).
42 Raiswell, R., Canfield, D. E., & Berner, R. A. (1994). A comparasion of iron extraction methods of degree of pyritisation and the recognition of iron-limited formation. Chemical Geology, 111, 101-110.
43 Rouychoudhury, A. N., Kostka, J. E., & Van Cappellen, P. (2003). Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine Coastal and Shelf Science, 57, 1183-1193.
44 Salomons, W., Kerdlik, H., van Pagee, H., Klomp, R., & Schreur, A. (1988). Behaviour and Impact Assessment of Heavy Metals in Estuarine and Coastal Zones, in: U. Seeliger, L.D. de Lacerda, S.R. Patchineelam (Eds.), Metals in Coastal Environments of Latin America. New York: Springer-Verlag.
45 Scholz, F., & Neumann, T. (2007). Trace element diagenesis in pyrite-rich sediments of the Achterwasser lagoon, SW Baltic Sea. Marine Chemistry, 107, 516-532.
46 Shikazono, N., Nakata, M., & Tokuyama, E. (1994). Pyrite with high Mn content from the Nankai Trough formed from subduction-induced cold seepage. Marine Geology, 118, 303-313.
47 Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in the sediments of Shing Mun River, Hong Kong. Environment International, 26, 297-301.
48 Tessier, A., Campbell, P., & Bison, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytic Chemistry, 51, 844-851.
49 Walling, D. E., Owens, P. N., Carter, J., Leeks, G. J., Lewis, S., Meharg, A. A., & Wright, J. (2003). Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Applied Geochemistry, 18, 195-220.
50 Zoumis, T., Schmidt, A., Grigorova, L., & Calmano, W. (2001). Contaminants in sediments: remobilisation and demobilisation. Science of Total Environment, 266, 195–202.