3D ray launching simulation of urban vehicle to infrastructure radio propagation links

Resumen

Vehicular ad hoc networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs), and Smart Cities must be able to take advantage of its applications and benefits on transportation operations. In urban environments some propagation impairments as reflection from, diffraction around and transmission loss through objects gives rise temporal and spatial variation of path loss and multipath effects. This work evaluates some parameters of a Vehicle-to-Infrastructure (V2I) wireless channel link such as large-scale path loss and multipath metrics in an urban scenario, using a deterministic 3D Ray-Launching (3D-RL) algorithm. Spatial analysis using Wireless Sensor Networks (WSNs) at 868 MHz, 2.4 Ghz and 5.9 GHz is presented. Results show the impact of factors as: geometry, dielectric properties and relative position of the obstacles, placement of the RSU and frequency link, in the V2I communication. The 3D-RL simulation shows better representation of the propagation phenomena when compared with an analytical path loss model, mainly at special types of intersections as roundabouts and give insight of the importance of the spatial distance and scenario segmentation to get consistent results.

PDF

Referencias

[1] M. Fay, L. Alberto, A. C. Fox, U. Narloch, S. Straub, and M. Slawson, “Rethinking Infrastructure in Latin America and the Caribbean Spending Better to Achieve More.” The World Bank, Washington, DC 20433, p. 88, 2017.

[2] U.S. Department of transportation (U.S. DOT), “Connected Vehicle Impacts on Transportation Planning.” Washington, DC 20590, p. 93, 2016.

[3] WAYMO., “Technology-We’re building a safer driver that is always alert and never distracted.” [Online]. Available: https://waymo.com/tech/. [Accessed: 30-Apr-2018].

[4] World Bank Group, “Intelligent Transport Systems - Toolkit for European Union.” [Online]. Available: https://ppp.worldbank.org/public-private-partnership/library/intelligent-transport-systems-its-toolkit-european-union. [Accessed: 30-Apr-2018].

[5] F. Basma, Y. Tachwali, and H. H. Refai, “Intersection collision avoidance system using infrastructure communication,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, pp. 422–427, 2011.

[6] E. Belyaev, A. Vinel, A. Surak, M. Gabbouj, M. Jonsson, and K. Egiazarian, “Robust vehicle-to-infrastructure video transmission for road surveillance applications,” IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 1–1, 2014.

[7] The Institute of Electrical and Electronics Engineers., “IEEE Std 802.11 p-2010. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY). Specifications-Amendment 6: Wireless Access in Vehicular Environments.,” New York, USA, 2010.

[8] J. Gozalvez, M. Sepulcre, and R.Bauza, “IEEE 802.11p Vehicle to Infrastructure Communications in Urban Environments,” Top. Automot. Netw. Appl., no. May, pp. 176–183, 2012.

[9] M. Boban, J. Barros, and O. K. Tonguz, “Geometry-Based Vehicle-to-Vehicle Channel Modeling for Large-Scale Simulation,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4146–4164, 2014.

[10] D. W. Matolak, “Modeling the vehicle-to-vehicle propagation channel: A review,” Radio Sci., vol. 49, no. 9, pp. 721–736, 2014.

[11] L. Bernado et al., “In-tunnel vehicular radio channel characterization,” IEEE Veh. Technol. Conf., pp. 1–5, 2011.

[12] P. Belanović, D. Valerio, A. Paier, T. Zemen, F. Ricciato, and C. F. Mecklenbräuker, “On wireless links for vehicle-to-infrastructure communications,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 269–282, 2010.

[13] F. Granda et al., “Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment,” Sensors, vol. 17, no. 6, p. 1313, 2017.

[14] L. Azpilicueta, C. Vargas-Rosales, and F. Falcone, “Deterministic Propagation Prediction in Transportation Systems.,” in IEEE Vehicular Technology Magazine, 2016, vol. 11, pp. 29–37.

[15] L. Bernado, T. Zemen, F. Tufvesson, A. F. Molisch, and C. F. Mecklenbräuker, “Time- and Frequency-Varying K-Factor of Non-Stationary Vehicular Channels for Safety-Relevant Scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 1007–1017, 2015.

[16] RedPine Signals., “Driving Wireless Convergence. WaveCombo Module. 802.11p V2X,” 2018. [Online]. Available: http://www.redpinesignals.com/Products/802.11p_V2X_Connectivity/802.11p_V2X_Module.php. [Accessed: 28-Feb-2018].

[17] T. Rappaport, Wireless communications: principles and practice., 2nd ed. United States: Prentice Hall PTR, Upper Saddle River, NJ, 2002.

[18] V. Shivaldova, M. Sepulcre, A. Winkelbauer, J. Gozalvez, and C. F. Mecklenbrauker, “A model for vehicle-to-infrastructure communications in urban environments,” 2015 IEEE Int. Conf. Commun. Work. ICCW 2015, pp. 2387–2392, 2015.

Los autores que publican en el Congreso de Ciencia y Tecnología están de acuerdo con los siguientes términos: Los autores conservan los derechos de autor y garantizan al congreso el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en el congreso. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en el congreso (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en este congreso. Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados.