Circuitos integrados fotónicos para la generación de frecuencias ópticas (OFCG)
Contenido principal del artículo
Resumen
Se presentan los avances realizados en el desarrollo de generadores de peines de frecuencias ópticas (OFCG, Optical Frequency Comb Generator) mediante circuitos integrados fotónicos (PIC, Photonic Integrated Circuits). Estos son diseñados y fabricados en un proceso de oblea multi-proyecto de una plataforma genérica de integración. Se muestran los resultados experimentales de las diferentes clases de OFCG destacando los anchos de banda logrados, en el orden de THz. Se resalta la factibilidad de disponer circuitos fotónicos miniaturizados en sistemas de banda ancha y otras aplicaciones futuras en el marco de la nanotecnología.
##plugins.themes.bootstrap3.displayStats.downloads##
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista. Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados.Cómo citar
Referencias
[2] Silva, C.F.C. y Seeds, A.J., “A dense WDM source for high spectral efficiency system using comb generation and SG-DBR injection-locked laser filtering”, in European Conference on Optical Communication, 2001.
[3] International Telecommunications Union, https://www.itu.int/rec/T-REC-G.692-199810-I/es.
[4] T. Sakamoto, T. Kawanishi and M. Izutsu, “Widely wavelength-tunable ultra-flat frequency comb generation using conventional dual-drive Mach-Zehnder modulator”, Electronic. Letters , vol 43, pp. 1039-1040, 2007.
[5] J. Zhang, J. Yu, N. Chi, Z. Dong, X. Li, Y. Shao, J. Yu and L. Tao, “Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidal sources with small frequency offset,” Opt. Lett., vol. 38, no. 4, pp. 552–4, Feb. 2013.
[6] K. Ho and J. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” Photonics Technol. Lett. IEEE, vol. 5, no. 6, pp. 721–725, 1993.
[7] E. A. Avrutin, J. H. Marsh and E. L. Portnoi, "Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications," in IEE Proceedings Optoelectronics, vol. 147, no. 4, pp. 251-278, Aug 2000.
[8] M. Smit, X. Leijtens, E. Bente, J. Van der Tol, H. Ambrosius, D. Robbins, M. Wale, N. Grote, and M. Schell, “Generic foundry model for InP-based photonics,” IET Optoelectron., vol. 5, no. 5, p. 187, 2011.
[9] N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, P. Dong, L. L. Buhl, y D. Ahn, “InP-based comb generator for optical OFDM”, Lightwave Technology, Journal of, vol. 30, no. 4, pp. 466–472, 2012.
[10] T. Saikai, T. Yamamoto, H. Yasaka and E. Yamada., “Flat-top Optical Frequency Comb Block Generation using InP-based Mach-Zehnder Modulator”, in the 25th International Conference on Indium Phosphide and Related Materials, IPRM2013, Kobe, Japan, May. 2013, paper MoD3-3.
[11] Z. Wang, K. Van Gasse, V. Moskalenko, S. Latkowski, E. Bente, B. Kuyken y G. Roelkens, “A III-V-on-Si ultra-dense comb laser”, Journal Light: Science &Amp; Applications, Vol 6, e16260, 2017.
[12] S. Arafin and L. A. Coldren, "Advanced InP Photonic Integrated Circuits for Communication and Sensing," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1-12, Jan.-Feb. 2018.
[13] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M. Suh, K. Y. Yang, M. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams and S. B. Papp, “An optical-frequency synthesizer using integrated photonics”, Nature: International Journal of Science, Vol 557, 81-85, April 2018.
[14] V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, and E. Bente, “Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser”, Optics Express, Vol. 22, No. 23, Nov 2014.
[15] J. S. Parker, A. Bhardwaj, P. R. A. Binetti, Y-J. Hung, and L. A. Coldren, “Monolithically Integrated Gain-Flattened Ring Mode-Locked Laser for Comb-Line Generation,” IEEE Photonics Technol. Lett., vol. 24, no. 2, pp. 131–133, Jan. 2012.
[16] P.Shen, Nathan J. Gomes, Phillip A. Davies, Peter G. Huggard, and Brian N. Ellison, “Analysis and demonstration of a fast tunable fiber-ring based optical frequency comb generator”, J. Lightw. Technol., 25, pp.3257-3264, Nov. 2007.
[17] OCLARO. http://www.oclaro.com/technology/photonic-integration/
[18] J. Zhao, “Integrated Multi-Wavelenght Transmitter using Filtered-Feedback”, Thesis dissertation, The Netherlands, 2013.
[19] Y. Dou, H. Zhang and M. Yao, "Generation of Flat Optical-Frequency Comb Using Cascaded Intensity and Phase Modulators," in IEEE Photonics Technology Letters, vol. 24, no. 9, pp. 727-729, May 1, 2012
[20] C. Gordón, R. Guzmán, V. Corral, X. Leijtens, and G. Carpintero, “On-chip Colliding Pulse Mode-locked laser diode (OCCP-MLLD) using multimode interference reflectors ”, Optics Express, Vol. 23, No. 11 DOI:10.1364/OE.23.014666, May 2015.
[21] E. Bente, V. Moskalenko, S. Latkowski, S. Tahvili, L. Augustin and M. Smit, “Monolithically integrated InP-based modelocked ring laser systems”, Proc. of SPIE, vol. 9134, pp. 91340C-1–91340C-10, 2014.
[22] K. A. Williams, M G Thompson and I H White “Long-wavelength monolithic mode-locked diode lasers” New Journal of Physics Vol. 6, 179, 2004.
[23] V. Moskalenko, J. Javaloyes, S. Balle, M. K. Smit and E. A. J. M. Bente, "Theoretical Study of Colliding Pulse Passively Mode-Locked Semiconductor Ring Lasers With an Intracavity Mach–Zehnder Modulator," in IEEE Journal of Quantum Electronics, vol. 50, no. 6, pp. 415-422, June 2014.
[24] SMART PHOTONICS. http://www.smartphotonics.nl/
[25] J. Parker, A. Sivananthan, M. Lu, L. Johansson, y L. Coldren, “Integrated phase-locked multi-THz comb for broadband offset locking”, in Optical Fiber Communication Conference, 2012, p. OM3E–5
[26] L. Chen, C. R. Doerr, N. Dupuis, “Tunable optical frequency comb generator”, United States Patent application publication, Sep. 13, 2012.
[27] R. Wu, V.R. Supradeepa, C. M. Long, D. E. Leaird and A. M. Weiner, “Generation of very flat optical frequency combs from continuous wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency forms”, Opt. Lett., vol 35, no. 19, pp. 3234-3236, 2010.