Reseña del servicio de radio de banda ancha ciudadana

Contenido principal del artículo

Danilo Corral-De-Witt
Yessenia Bermeo Guerrero
Juan Carlos Cachimuel
José Luis Rojo-Álvarez
Kemal Tepe

Resumen

El presente artículo ofrece una reseña del Servicio de Radio de Banda Ancha Ciudadana (CBRS) y sus características. También describe el Sistema de acceso al espectro el cual permite que las bandas no utilizadas por los usuarios primarios sean ocupadas de forma inteligente por usuarios secundarios para optimizar el uso de este recurso. Como regla general, CBRS opera entre 3550 MHz y 3700 MHz para permitir la conectividad de los usuarios desde diferentes operadores en ubicaciones  de  alto  tráfico  mediante el uso de host neutrales, con el fin de minimizar  los costos de instalación y operación a los operadores del Servicio Móvil Avanzado. CBRS también funciona como una red LTE privada, la cual cuenta con  varias  ventajas con respecto a otras tecnologías de redes inalámbricas. Esta innovadora propuesta marca un hito en el cambio de la asignación fija del espectro de radio a un acceso dinámico controlado, lo que permite la conectividad a una amplia gama de dispositivos inalámbricos.

Detalles del artículo

Cómo citar
Reseña del servicio de radio de banda ancha ciudadana. (2021). MASKAY, 12(1), 1-9. https://doi.org/10.24133/maskay.v12i1.1999
Sección
ARTÍCULOS TÉCNICOS

Cómo citar

Reseña del servicio de radio de banda ancha ciudadana. (2021). MASKAY, 12(1), 1-9. https://doi.org/10.24133/maskay.v12i1.1999

Referencias

[1] J. R. Agre and K. D. Gordon, “A summary of recent federal government activities to promote spectrum sharing,” Institute for Defense Analysis, Paper P-5186, Sep. 2015.

[2] V. K. Shah, S. Bhattacharjee, S. Silvestri, and S. K. Das, “Designing green communication systems for smart and connected communities via dynamic spectrum access,” ACM Transactions on Sensor Networks, vol. 14, no. 3-4, pp. 1–32, Dec. 2018.

[3] 3GPP.org, “Specifications 21 series 21.914,” Accessed 01-04-2021 at https://www.3gpp.org/ftp//Specs/archive/21_series/21.914/, 2021.

[4] Federal Communications Commission, “3.5 GHz Band Overview,” Accessed 01-17-2021 at https://www.fcc.gov/ wireless/bureau-divisions/mobility-division/35-ghz-band/35-ghz-band-overview, 2021.

[5] M. R. Souryal and T. T. Nguyen, “Effect of federal incumbent activity on cbrs commercial service,” in Proc. IEEE Internatio- nal Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA , Nov. 2019, pp. 1–5.

[6] M. B. Weiss, W. H. Lehr, A. Acker, and M. M. Gomez, “Socio- technical considerations for spectrum access system (sas) design,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks, Stockholm, Sweden, Sep. 2015, pp. 35–46.

[7] L. Kulacz, P. Kryszkiewicz, A. Kliks, H. Bogucka, J. Ojaniemi, J. Paavola, J. Kalliovaara, and H. Kokkinen, “Coordinated spectrum allocation and coexistence management in cbrssas wireless networks,” IEEE Access, vol. 7, pp. 139 294–139 316, Sep. 2019.

[8] S. Kikamaze, “Design, Deployment and Performance of an Open Source Spectrum Access System,” Ph.D. dissertation, Virginia Tech, 2018.

[9] R. Caromi, M. Souryal, and W.-B. Yang, “Detection of incumbent radar in the 3.5 ghz cbrs band,” in Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, Nov. 2018, pp. 241–245.

[10] M. Troglia, J. Melcher, Y. Zheng, D. Anthony, A. Yang, and T. Yang, “Fair: Federated incumbent detection in cbrs band,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, Nov. 2019, pp. 1–6.

[11] X. Ying, M. M. Buddhikot, and S. Roy, “Sas-assisted coexistence-aware dynamic channel assignment in cbrs band,” IEEE Transactions on Wireless Communications, vol. 17, no. 9, pp. 6307–6320, Sep. 2018.

[12] M. Palola, V. Hartikainen, M. Makelainen, T. Kippola, P. Aho, K. Lahetkangas, L. Tudose, A. Kivinen, S. Joshi, and J. Hallio, “The first end-to-end live trial of cbrs with carrier aggregation using 3.5 ghz lte equipment,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, MD, USA, Mar. 2017, pp. 1–2.

[13] K. Buckwitz, J. Engelberg, and G. Rausch, “Licensed Shared Access (LSA) — Regulatory background and view of Administrations,” in Proc. 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Oulu, Finland, Jun. 2014, pp. 413–416.

[14] K. Mun, “CBRS: New Shared Spectrum Enables Flexible Indoor and Outdoor Mobile Solutions and New Business Models,” Accessed 25-06-2021 at https://federatedwireless. com/wp-content/uploads/2017/09/Mobile-Experts-CBRS-Overview.pdf, 2017.

[15] Y. Ye, D. Wu, Z. Shu, and Y. Qian, “Overview of lte spectrum sharing technologies,” IEEE Access, vol. 4, pp. 8105–8115, Nov. 2016.

[16] Federal Communications Commission and others, “Notice of Proposed Rulemaking and Order—Amendment of the Commission’s Rules With Regard to Commercial Operations in the 3550–3650MHz Band,” Federal Communications Commission, pp. 12–148, 2012.

[17] G. T.-L. Initiative, “Global TD-LTE Initiative,” International Working Group: Spectrum WG. GTI was kicked off in February 2011 in Barcelona by Bharti Airtel, China Mobile, Sprint (Clearwire), SoftBank Mobile and Vodafone, Qualcomm Technol., Inc., San Diego, CA, USA, pp. 1–11, 2014.

[18] FCC, “Amendment of the commissions rules with regard to commercial operations in the 3550–3650MHz band,” Federal Communications Commission Washington, D.C., pp. 1–21, 2012. [Online]. Available: https://apps.fcc.gov/edocs_public/ attachmatch/DA-15-955A1-Rcd.pdf.

[19] Locke, Gary and Strickling, Lawrence E and Secretary, A, “An assessment of the near-term viability of accommodating wireless broadband systems in the 1675-1710 mhz, 1755-1780 mhz, 3500-3650 mhz, and 4200-4220 mhz, 4380-4400 mhz bands,” pp. 3500–3650, Nov. 2010.

[20] Federal Communications Commission, “3.5GHz Spectrum Access System Workshop,” Washington, DC, USA ,” Accessed 01- 04-2021 at https://www.fcc.gov/news-events/events/2014/01/35-ghz-spectrum-access-system-workshop, 2014.

[21] A. Aijaz, “Private 5G: The future of industrial wireless,” IEEE Industrial Electronics Magazine, vol. 14, no. 4, pp. 136–145, Dec. 2020.

[22] Y. Dou, K. Zeng, H. Li, Y. Yang, B. Gao, K. Ren, and S. Li, “P 2-sas: preserving users’ privacy in centralized dynamic spectrum access systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 1, pp. 173–187, Nov. 2016.

[23] M. Grissa, A. A. Yavuz, and B. Hamdaoui, “Trustsas: A trustworthy spectrum access system for the 3.5 ghz cbrs band,” in Proc. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, Paris, France, May. 2019, pp. 1495–1503.

[24] D. H. Kang, K. Balachandran, and M. Buchmayer, “Coexistence performance of gaa use cases using lte-tdd technologies in 3.5ghz cbrs spectrum,” in Proc. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea (South), Oct. 2018, pp. 1– 7.

[25] N. N. Krishnan, N. Mandayam, I. Seskar, and S. Kompella, “Experiment: Investigating feasibility of coexistence of lte-u with a rotating radar in cbrs bands,” in Proc. IEEE 5G World Forum (5GWF), Silicon Valley, CA, USA, Jul. 2018, pp. 65–70.

[26] M. Girmay, V. Maglogiannis, D. Naudts, J. Fontaine, A. Shahid, E. De Poorter, and I. Moerman, “Adaptive CNN-based Private LTE Solution for Fair Coexistence with Wi-Fi in Unlicensed Spectrum,” in Proc. IEEE INFOCOM - IEEE Conference on Computer Communications Workshops, Toronto, ON, Canada, Jul. 2020, pp. 346–351.

[27] S. Yrjölä and A. Jette, “Assessing the Feasibility of the Citizens Broadband Radio Service Concept for the Private Industrial Internet of Things Networks,” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 291, pp. 344–357, Aug. 2019.

[28] P. C. Pappa, A. Sarbhai, A. Baset, S. Kasera, and M. Buddhikot, “Spectrum sharing in cbrs using blockchain,” in Proc. IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Delhi, India, Dec. 2020, pp. 631–639.

[29] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke, “The IEEE 802.11 universe,” IEEE Communications Magazine, vol. 48, no. 1, pp. 62–70, Jan. 2010.

[30] Jeremy Horwitz, “FCC unlocks 3.5GHz CBRS band, enables OnGo in Apple and Android phones,” Accessed 01-31-2021 at https://venturebeat.com/2020/01/27/fcc-unlocks-3-5ghz-cbrs-band-enables-ongo-in-apple-and-android-phones/, 2021.

[31] L. Militano, G. Araniti, M. Condoluci, I. Farris, and A. Iera, “Device-to-device communications for 5g internet of things,” EAI Endorsed Transactions on Internet of Things, vol. 1, no. 1, Oct. 2015.

[32] Jeremy Horwitz, “The definitive guide to 5G low, mid, and high band speeds,” Accessed 01-31-2021 at https://venturebeat.com/2019/12/10/the-definitive-guide-to-5g-low-mid-and-high-band-speeds/, 2021.

[33] OnGo Alliance, “CBRS Alliance Rebrands to OnGo Alliance to Support Global Shared Spectrum Initiatives,” Accessed 01- 28-2021 at https://www.cbrsalliance.org/news/cbrs-alliance-rebrands-to-ongo-alliance-to-support-global-shared-spectrum- initiatives/, 2021.

[34] CBRS Alliance, “CBRS: Should the enterprise and venue owners care?” Accessed 01-31-2021 at https://www.cbrsalliance.org/wp-content/uploads/2019/02/SenzaFili_CBRS_DeepDiveReport.\pdf, 2021.

[35] WiFi Alliance, “Certification,” Accessed 02-24-2021 at https:// www.wi-fi.org/certification, 2021.

[36] Y. Y. D. W. Z. SHU, “Overview of LTE Spectrum Sharing Technologies,” IEEE Communications Magazine, vol. 4, no. 1, pp. 3–7, Nov. 2017.

[37] Yun Ye and Dalei Wu and Zhihui Shu and Yi Qian, “Overview of LTE Spectrum Sharing Technologies,” IEEE Access, pp. 1–11, Nov. 2016.

[38] A. Alsohaily and E. S. Sousa, “Spectrum sharing LTE-advanced small cell systems,” in Proc. 16th International Symposium on Wireless Personal Multimedia Communications (WPMC), Atlantic City, NJ, USA, Jun. 2013, pp. 1–5.

[39] E. Almeida et al., “Enabling LTE/WiFi coexistence by LTE blank subframe allocation,” in Proc. IEEE International Conference on Communications (ICC), Budapest, Hungary, Jun. 2013, pp. 2301–2306.

[40] M. Massaro and F. Beltrán, “Will 5G lead to more spectrum sharing? Discussing recent developments of the LSA and the CBRS spectrum sharing frameworks,” Telecommunications Policy, vol. 44, no. 7, p. 101973, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0308596120300653

[41] FCC, “Notice of Proposed Rulemaking and Order—Amendment of the Commission’s Rules With Regard to Commercial Opera- tions in the 3550–3650 MHz Band, ,” FCC Magazine, 2012.

[42] D. N. AnalyTICs, “Avances de 5G en América Latina,” Accessed 20-06-2021 at https://digitalpolicylaw.com/wp- content/uploads/2020/09/dplnews-analytics-avances-5G-america-latina.pdf, 2020.

[43] M. de Telecomunicaciones, “Ecuador Digital,” Accessed 20-06-2021 at https://www.telecomunicaciones.gob.ec/25693-2/, 2020.

[44] E. I. y Competitivo, “Plan Nacional de Frecuencias a todo servicio de telecomunicaciones,” Accessed 20-06-2021 at https://www.telecomunicaciones.gob.ec/ecuador-innovador-y-competitivo/, 2014.

[45] E. E. y Seguro, “Plan Nacional de Frecuencias a todo servicio de telecomunicaciones,” Accessed 20-06-2021 at https://www.telecomunicaciones.gob.ec/ecuador-eficiente-y-ciberseguro/, 2014.

[46] M. de Telecomunicaciones, “Plan Nacional de Frecuencias a todo servicio de telecomunicaciones,” Accessed 20- 06-2021 at https://www.telecomunicaciones.gob.ec/wp-content/uploads/downloads/2012/11/Plan-Nacional-de-Frecuencias-a-todo-Servicio-de-Telecomunicacines.pdf, 2014.

[47] J. Lombardi, “SearchDataCenter en Español,” Accessed 20-06- 2021 at https://searchdatacenter.techtarget.com/es/opinion/La-batalla-por-el-acceso-de-alta-velocidad-FTTH-vs-o-FWA, 2018.

[48] D. News, “Ecuador ya exploró el espectro de 3.5 GHz para 5G FWA,” Accessed 20-06-2021 at https://digitalpolicylaw.com/ecuador-ya-exploro-el-espectro-de-3-5-ghz-para-5g-fwa/, 2020.

[49] J. Cárdenas, “Sistemas Inalámbricos Fijos,” Cuba: Facultad de Ing. Eléctrica. UCLV, 2018.

[50] Arcotel, “Plan Nacional de Frecuencias,” Accessed 25-06- 2021 at https://www.arcotel.gob.ec/wp-content/uploads/downloads/2013/07/plan_nacional_frecuencias_2012.pdf, 2014.

[51] L. Telecomunicaciones, “Ley Orgánica de Telecomunicaciones,” Accessed 25-06-2021 at http://www.arcotel.gob.ec/wp-content/uploads/downloads/2016/01/ley-organica-de- telecomunicaciones.pdf., 2015.

[52] V. H. G. Pacheco, “Análisis Técnico, Regulatorio y Económico del despliegue de servicios de telecomunicaciones en la banda de 10GHz en Ecuador,” Ecuador:PUCE, 2016.

[53] COMMSCOPE RUCKUS, “DATA SHEET RUCKUS Q710. High Capacity Indoor LTE Access Point for the 3.5GHz CBRS Band ,” Accessed 05-06-2021 at https://es.commscope.com/ globalassets/digizuite/61764-ds-ruckus-q710.pdf, 2020.

[54] ——, “DATA SHEET RUCKUS Q910. High Capacity Indoor LTE Access Point for the 3.5GHz CBRS Band ,” Accessed 05- 06-2021 at https://es.commscope.com/globalassets/digizuite/61765-ds-ruckus-q910.pdf, 2020.

[55] Gobierno Ecuatoriano, “Plan Nacional de Frecuencias 2017,” Accessed 03-18-2021 at https://issuu.com/arcotelecuador/ docs/pnf-final_1_/, 2018.

[56] GSMA, “5G and 3.5 GHz Range in Latam Spanish,” Accessed 03-18-2021 at https://www.gsma.com/spectrum/wp- content/uploads/2020/11/5G-and-3.5-GHz-Range-in-Latam-Spanish.\pdf, 2021.

[57] Agencia de Regulación y Control de las Telecomunicaciones, “RESOLUCIÓN Nro. ARCOTEL-2018-0624,” Accessed 20-06-2021 at https://www.arcotel.gob.ec/wp-content/uploads/ downloads/2018/07/Resolucion-ARCOTEL-2018-0624.pdf, 2020.

[58] A. de Regulación y Control de las Telecomunicaciones, “RESOLUCIÓN Nro. ARCOTEL-2020-0685,” Accessed 20-06-2021 at https://www.arcotel.gob.ec/wp-content/uploads/ downloads/2020/12/Resolucion-ARCOTEL-2020-0685.pdf, 2020.

[59] A. J. Rodríguez Criollo, “Evolución de las redes de telecomuni- caciones y calidad de servicio en redes de nueva generación NGN en el Ecuador,” Pontificia Universidad Católica del Ecuador, pp. 1–187, 2016.

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 > >>