TIPOLOGÍA Y CINÉTICA DEL DESLIZAMIENTO REINA DEL CISNE (CUENCA) A PARTIR DE FOTOGRAFÍAS AÉREAS, GPS, ESCÁNER LÁSER TERRESTRE Y ENSAYOS GEOTÉCNICOS DEL SUELO.
Main Article Content
Abstract
En marzo de 2017 se desencadenó el deslizamiento de la ladera ubicada en el sector Reina del Cisne (Cuenca) a raíz del corte que se le aplicó a la ladera para la construcción de una pequeña vía de acceso a una casa. El deslizamiento está condicionado por la litología de la ladera (arenas principalmente) y su elevada pendiente (hasta 40 º). Desde marzo hasta de junio de 2017, período analizado en este trabajo, el deslizamiento ha provocado daños estructurales parciales o totales en viviendas, daños en un campo de cultivo y el taponamiento total de la vía que lo desencadenó. Las visitas de campo desde el mes de marzo’17 y la comparación con CloudCompare de las nubes de puntos obtenidas con escáner láser terrestre en los meses de mayo y junio de 2017, han puesto de manifiesto la alta actividad de este deslizamiento. Se ha analizado tridimensionalmente una vivienda afectada y ésta ha experimentado hundimiento y basculamiento hacia ladera abajo con desplazamientos puntuales de hasta 91 cm en 20 días.
Article Details
How to Cite
TIPOLOGÍA Y CINÉTICA DEL DESLIZAMIENTO REINA DEL CISNE (CUENCA) A PARTIR DE FOTOGRAFÍAS AÉREAS, GPS, ESCÁNER LÁSER TERRESTRE Y ENSAYOS GEOTÉCNICOS DEL SUELO. (2020). Revista Geoespacial, 14(2), 50-66. https://journal.espe.edu.ec/ojs/index.php/revista-geoespacial/article/view/1599
Section
Artículos Técnicos
Acceso a archivos
Los artículos publicados en la Revista Geoespacial se sujetan a las directrices de OPEN ACCES, en cuanto a la apertura de su contenido hacia todos los visitantes del sitio.
Derechos que conserva el autor:
El autor conserva los derechos morales de publicación
Cesión de derechos a autores:
Se cede los derechos de citas, referencias y temas relacionados con aspectos académicos y de investigación
How to Cite
TIPOLOGÍA Y CINÉTICA DEL DESLIZAMIENTO REINA DEL CISNE (CUENCA) A PARTIR DE FOTOGRAFÍAS AÉREAS, GPS, ESCÁNER LÁSER TERRESTRE Y ENSAYOS GEOTÉCNICOS DEL SUELO. (2020). Revista Geoespacial, 14(2), 50-66. https://journal.espe.edu.ec/ojs/index.php/revista-geoespacial/article/view/1599
References
Baldock, J. W. (1982). Geology of Ecuador: explanatory bulletin of the national geological map of the Republic of Ecuador; 1: 1,000, 00 scale 1982. Ministerio de Recursos Naturales y Energéticos, Dirección General de Geología y Minas.
Barbarella, M. (2013). Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing. European Journal of Remote Sensing, 126–151. https://doi.org/10.5721/EuJRS20134608
Bardi, F., Frodella, W., Ciampalini, A., Bianchini, S., Ventisette, C. Del, Gigli, G., … Casagli, N. (2014). Integration between ground based and satellite {SAR} data in landslide mapping: The San Fratello case study. Geomorphology, 223, 45–60. https://doi.org/http://dx.doi.org/10.1016/j.geomorph.2014.06.025
Bitelli, G., Dubbini, M., & Zanutta, A. (2004a). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B5), 246–251.
Bitelli, G., Dubbini, M., & Zanutta, A. (2004b). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Photogrammetry, Remote Sensing and Spatial Information Sciences, 1–6. https://doi.org/10.1.1.1.9772
Brabb, E. E., & Harrod, B. L. (1989). Landslides: extent and economic significance. Proceedings of the 28th International Geological Congress: Symposium on Landslides.
Brückl, E., Brunner, F. K., & Kraus, K. (2006). Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Engineering Geology, 88(3), 149–159.
Chen, W., Li, X., Wang, Y., Chen, G., & Liu, S. (2014). Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China.Remote Sensing of Environment, 152, 291–301. https://doi.org/http://dx.doi.org/10.1016/j.rse.2014.07.004
Conner, J. C., & Olsen, M. J. (2014). Automated quantification of distributed landslide movement using circular tree trunks extracted from terrestrial laser scan data. Computers & Geosciences, 67, 31–39. https://doi.org/10.1016/j.cageo.2014.02.007
de Cuenca, I. M. (2011). Plan de Desarrollo y Ordenamiento territorial del cantón Cuenca. Municipalidad de Cuenca, 98–99.
Du, J.-C., & Teng, H.-C. (2007). 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction, 16(5), 657–663. https://doi.org/10.1016/j.autcon.2006.11.002
Eeckhaut, M. Van Den, Poesen, J., Gullentops, F., Vandekerckhove, L., & Hervás, J. (2011). Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quaternary Research, 75(3), 721–733. https://doi.org/http://dx.doi.org/10.1016/j.yqres.2011.02.006
González-Zúñiga, J. C. (2010). Monitorización de deslizamientos de ladera mediante estación total y GPS diferencial. Aplicación al deslizamiento del kilómetro 35+000 de la vía Loja-Cuenca (Ecuador), 71. Retrieved from http://repositorio.educacionsuperior.gob.ec/handle/28000/1686
Hernández, M. a., Pérez-García, J. L., Fernández, T., Cardenal, F. J., Mata, E., López, A., …Mozas, A. (2012). Methodology for landslide monitoring in a road cut by means of terrestrial laser-scanning techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 39(September), 21–26. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84924281191&partnerID=tZOtx3y1
Martire, D. Di, Tessitore, S., Brancato, D., Ciminelli, M. G., Costabile, S., Costantini, M., … Calcaterra, D. (2016). Landslide detection integrated system (LaDIS) based on in-situ and satellite {SAR} interferometry measurements. {CATENA}, 137, 406–421. https://doi.org/http://dx.doi.org/10.1016/j.catena.2015.10.002
Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., & Pesci, A. (2003). Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’di Malta landslide (northern Apennines, Italy). Engineering Geology, 68(1), 103–121.
Niethammer, U., Rothmund, S., James, M. R., Travelletti, J., & Joswig, M. (2010). UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 496–501.
Schulz, W. H. (2007). Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89(1), 67–87. https://doi.org/10.1016/j.enggeo.2006.09.019
Teza, G., Galgaro, A., Zaltron, N., & Genevois, R. (2007). Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing, 28(16), 3425–3446.
Teza, G., Pesci, A., Genevois, R., & Galgaro, A. (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97(3), 424–437. https://doi.org/10.1016/j.geomorph.2007.09.003
Travelletti, J., Malet, J.-P., & Delacourt, C. (2014). Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. International Journal of Applied Earth Observation and Geoinformation, 32(0), 1–18. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243414000804
Travelletti, J., & Oppikofer, T. (2008). Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007(July), 1–6. Retrieved from http://eost.u-strasbg.fr/omiv/Publications/Travelletti_2008_ISPRS.pdf
Ventisette, C., Righini, G., Moretti, S., & Casagli, N. (2014). Multitemporal landslides inventory map updating using spaceborne {SAR} analysis. International Journal of Applied Earth Observation and Geoinformation, 30, 238–246. https://doi.org/http://dx.doi.org/10.1016/j.jag.2014.02.008
Wang, G., Philips, D., Joyce, J., & Rivera, F. (2011). The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. Journal of Geodetic Science, 1(1), 25–34.
Barbarella, M. (2013). Monitoring of large landslides by Terrestrial Laser Scanning techniques: field data collection and processing. European Journal of Remote Sensing, 126–151. https://doi.org/10.5721/EuJRS20134608
Bardi, F., Frodella, W., Ciampalini, A., Bianchini, S., Ventisette, C. Del, Gigli, G., … Casagli, N. (2014). Integration between ground based and satellite {SAR} data in landslide mapping: The San Fratello case study. Geomorphology, 223, 45–60. https://doi.org/http://dx.doi.org/10.1016/j.geomorph.2014.06.025
Bitelli, G., Dubbini, M., & Zanutta, A. (2004a). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B5), 246–251.
Bitelli, G., Dubbini, M., & Zanutta, A. (2004b). Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. Photogrammetry, Remote Sensing and Spatial Information Sciences, 1–6. https://doi.org/10.1.1.1.9772
Brabb, E. E., & Harrod, B. L. (1989). Landslides: extent and economic significance. Proceedings of the 28th International Geological Congress: Symposium on Landslides.
Brückl, E., Brunner, F. K., & Kraus, K. (2006). Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Engineering Geology, 88(3), 149–159.
Chen, W., Li, X., Wang, Y., Chen, G., & Liu, S. (2014). Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China.Remote Sensing of Environment, 152, 291–301. https://doi.org/http://dx.doi.org/10.1016/j.rse.2014.07.004
Conner, J. C., & Olsen, M. J. (2014). Automated quantification of distributed landslide movement using circular tree trunks extracted from terrestrial laser scan data. Computers & Geosciences, 67, 31–39. https://doi.org/10.1016/j.cageo.2014.02.007
de Cuenca, I. M. (2011). Plan de Desarrollo y Ordenamiento territorial del cantón Cuenca. Municipalidad de Cuenca, 98–99.
Du, J.-C., & Teng, H.-C. (2007). 3D laser scanning and GPS technology for landslide earthwork volume estimation. Automation in Construction, 16(5), 657–663. https://doi.org/10.1016/j.autcon.2006.11.002
Eeckhaut, M. Van Den, Poesen, J., Gullentops, F., Vandekerckhove, L., & Hervás, J. (2011). Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quaternary Research, 75(3), 721–733. https://doi.org/http://dx.doi.org/10.1016/j.yqres.2011.02.006
González-Zúñiga, J. C. (2010). Monitorización de deslizamientos de ladera mediante estación total y GPS diferencial. Aplicación al deslizamiento del kilómetro 35+000 de la vía Loja-Cuenca (Ecuador), 71. Retrieved from http://repositorio.educacionsuperior.gob.ec/handle/28000/1686
Hernández, M. a., Pérez-García, J. L., Fernández, T., Cardenal, F. J., Mata, E., López, A., …Mozas, A. (2012). Methodology for landslide monitoring in a road cut by means of terrestrial laser-scanning techniques. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 39(September), 21–26. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84924281191&partnerID=tZOtx3y1
Martire, D. Di, Tessitore, S., Brancato, D., Ciminelli, M. G., Costabile, S., Costantini, M., … Calcaterra, D. (2016). Landslide detection integrated system (LaDIS) based on in-situ and satellite {SAR} interferometry measurements. {CATENA}, 137, 406–421. https://doi.org/http://dx.doi.org/10.1016/j.catena.2015.10.002
Mora, P., Baldi, P., Casula, G., Fabris, M., Ghirotti, M., Mazzini, E., & Pesci, A. (2003). Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: application to the Ca’di Malta landslide (northern Apennines, Italy). Engineering Geology, 68(1), 103–121.
Niethammer, U., Rothmund, S., James, M. R., Travelletti, J., & Joswig, M. (2010). UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 496–501.
Schulz, W. H. (2007). Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89(1), 67–87. https://doi.org/10.1016/j.enggeo.2006.09.019
Teza, G., Galgaro, A., Zaltron, N., & Genevois, R. (2007). Terrestrial laser scanner to detect landslide displacement fields: a new approach. International Journal of Remote Sensing, 28(16), 3425–3446.
Teza, G., Pesci, A., Genevois, R., & Galgaro, A. (2008). Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97(3), 424–437. https://doi.org/10.1016/j.geomorph.2007.09.003
Travelletti, J., Malet, J.-P., & Delacourt, C. (2014). Image-based correlation of Laser Scanning point cloud time series for landslide monitoring. International Journal of Applied Earth Observation and Geoinformation, 32(0), 1–18. Retrieved from http://www.sciencedirect.com/science/article/pii/S0303243414000804
Travelletti, J., & Oppikofer, T. (2008). Monitoring landslide displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007(July), 1–6. Retrieved from http://eost.u-strasbg.fr/omiv/Publications/Travelletti_2008_ISPRS.pdf
Ventisette, C., Righini, G., Moretti, S., & Casagli, N. (2014). Multitemporal landslides inventory map updating using spaceborne {SAR} analysis. International Journal of Applied Earth Observation and Geoinformation, 30, 238–246. https://doi.org/http://dx.doi.org/10.1016/j.jag.2014.02.008
Wang, G., Philips, D., Joyce, J., & Rivera, F. (2011). The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. Journal of Geodetic Science, 1(1), 25–34.