Control del sistema de propulsión de un vehículo eléctrico híbrido con motor de hidrógeno, usando baterías y supercapacitores

Contenido principal del artículo

José Luis Sampietro

Resumen

La correcta gestión energética de las fuentes de propulsión y almacenamiento de un vehículo eléctrico híbrido permite disminuir el uso de combustible, operar en forma más eficiente y aumentar el tiempo de vida de los componentes. En el presente artículo se estudian diversas técnicas de control para un vehículo híbrido con motor de hidrógeno como fuente de generación principal; y  baterías/supercapacitores como fuentes combinadas de almacenamiento. Se hace una comparación de técnicas predictivas con la técnica de programación dinámica. Se estudian además distintos tipos de perfiles de velocidad para generalizar los resultados. Se concluye que el controlador predictivo económico y el controlador predictivo económico robusto permiten gestionar de manera eficiente el uso de los elementos de almacenamiento mediante el frenado regenerativo  y alcanzar los perfiles de conducción con una reducción del consumo de combustible, operando por consiguiente la pila de combustible en sus mayores puntos de eficiencia.

Detalles del artículo

Cómo citar
Control del sistema de propulsión de un vehículo eléctrico híbrido con motor de hidrógeno, usando baterías y supercapacitores. (2022). MASKAY, 12(2), 1-14. https://doi.org/10.24133/maskay.v12i2.2244
Sección
ARTÍCULOS TÉCNICOS

Cómo citar

Control del sistema de propulsión de un vehículo eléctrico híbrido con motor de hidrógeno, usando baterías y supercapacitores. (2022). MASKAY, 12(2), 1-14. https://doi.org/10.24133/maskay.v12i2.2244

Referencias

Richard Newell and Stuart Iler. The global energy outlook. Technical report, National Bureau of Economic Research, 2013.

Shunping Jia, Hongqin Peng, Shuang Liu, and Xiaojie Zhang, “Review of transportation and energy consumption related research,” Journal of Transportation Systems Engineering and Information Technology, vol. 9, no. 3, pp. 6–16, Jun. 2009.

Mahlia, T., Saidur, R., Memon, L., Zulkifli, N., and Masjuki, H. “A review on fuel economy standard for motor vehicles with the implementation possibilities” Renewable and Sustainable Energy Reviews, 14(9), pp. 3092–3099, 2010.

Hannan, M., Hoque, M., Mohamed, A., & Ayob, A. “Review of energy storage systems for electric vehicle applications: Issues and challenges,” Renewable and Sustainable Energy Reviews, vol 69, pp. 771–789, 2017.

Devineni, M., Dinger, A., Gerrits, M., Mezger, T., Mosquet, X., Russo, M., and Zablit, H. “Powering autos to 2020: the era of the electric car”. Report Boston Consulting Group, Jul. 2011.

Rodatz, P., Paganelli, G., Sciarretta, A., and Guzzella, L. “Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle,” Control Engineering Practice, vol 13, pp. 41–53. Jan. 2005.

Apurba Sakti, Jeremy J. Michalek, Erica R.H. Fuchs, and Jay F. Whitacre. “A technoeconomic analysis and optimization of li-ion batteries for light-duty passenger vehicle electrification,” Journal of Power Sources, Volume 273 (Supplement C): pp. 966. Jan. 2015.

Shen, J., Dusmez, S., and Khaligh, A., "Optimization of Sizing and Battery Cycle Life in Battery/Ultracapacitor Hybrid Energy Storage Systems for Electric Vehicle Applications," in IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2112-2121, Nov. 2014.

Martin Redelbach, Enver Doruk Ozdemir, and Horst E. Friedrich. “Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types,” Energy Policy, vol 73(Supplement C): pp. 158 – 168, Oct. 2014.

Tedjani Mesbahi, Fouad Khenfri, Nassim Rizoug, Khaled Chaaban, Patrick Bartholome us, and Philippe Le Moigne. “Dynamical modeling of li-ion batteries for electric vehicle applications based on hybrid particle swarm–nelder–mead (pso–nm) optimization algorithm,” Electric Power Systems Research, vol 131(Supplement C):pp. 195 – 204, Feb. 2016.

Hu, X., Murgovski, N., Johannesson, L. M., and Egardt, B, "Optimal Dimensioning and Power Management of a Fuel Cell/Battery Hybrid Bus via Convex Programming," in IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp. 457-468, Feb. 2015.

Hu, X., Moura, S. J., Murgovski, N., Egardt, B., & Cao, D, "Integrated Optimization of Battery Sizing, Charging, and Power Management in Plug-In Hybrid Electric Vehicles," in IEEE Transactions on Control Systems Technology, vol. 24, no. 3, pp. 1036-1043, May 2016.

Hanane Hemi, Jamel Ghouili, and Ahmed Cheriti. “A real time fuzzy logic power management strategy for a fuel cell vehicle,” Energy Conversion and Management, vol. 80(Supplement C): pp. 63 – 70, Apr. 2014.

Zhongyue Zou, Junyi Cao, Binggang Cao, and Wen Chen. “Evaluation strategy of regenerative braking energy for supercapacitor vehicle,” ISA Transactions, vol. 55(Supplement C): pp. 234 – 240, May. 2015.

Choi, J. Lee and Seo., S. "Real-Time Optimization for Power Management Systems of a Battery/Supercapacitor Hybrid Energy Storage System in Electric Vehicles," in IEEE Transactions on Vehicular Technology, vol. 63, no. 8, pp. 3600-3611, Oct. 2014.

Ayad, M., Becherif, M., and Henni, A. “Vehicle hybridization with fuel cell, supercapacitors and batteries by sliding mode control,” Renewable Energy: Generation & Application, vol. 36(10): pp. 2627 – 2634, Oct. 2011.

Ziyou Song, Heath Hofmann, Jianqiu Li, Jun Hou, Xuebing Han, and Minggao Ouyang. “Energy management strategies comparison for electric vehicles with hybrid energy storage system,” Applied Energy, vol. 134(Supplement C):pp. 321 – 331, May 2014.

M.A. Hannan, F.A. Azidin, and A. Mohamed. “Hybrid electric vehicles and their challenges: A review,” Renewable and Sustainable Energy Reviews, vol. 29 (Supplement C): pp. 135 – 150, Oct. 2014.

P. Thounthong, V. Chunkag, P. Sethakul, B. Davat and M. Hinaje, "Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device," in IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp. 3892-3904, Oct. 2009.

Abbas Fotouhi, Rubiyah Yusof, Rasoul Rahmani, Saad Mekhilef, and Neda Shateri. “A review on the applications of driving data and traffic information for vehicles energy conservation,” Renewable and Sustainable Energy Reviews, vol. 37 (Supplement C): pp. 822 – 833, Jan 2014.

H. Khurana, M. Hadley, N. Lu and D. A. Frincke, "Smart-grid security issues," in IEEE Security & Privacy, vol. 8, no. 1, pp. 81-85, Jan.-Feb. 2010.

Lijun Gao, R. A. Dougal and Shengyi Liu, "Power enhancement of an actively controlled battery/ultracapacitor hybrid," in IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 236-243, Jan. 2005.

Hanane Hemi, Jamel Ghouili, and Ahmed Cheriti. “Combination of markov chain and optimal control solved by pontryagin’s minimum principle for a fuel cell/supercapacitor vehicle,” Energy Conversion and Management, vol. 91 (Supplement C): pp. 387 – 393, May 2015.

G. Nielson and A. Emadi, "Hybrid energy storage systems for high-performance hybrid electric vehicles," in Proc. IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, Sep. 2011, pp. 1-6.

Q. Xiaodong, W. Qingnian and Y. YuanBin, "Power Demand Analysis and Performance Estimation for Active-Combination Energy Storage System Used in Hybrid Electric Vehicles," in IEEE Transactions on Vehicular Technology, vol. 63, no. 7, pp. 3128-3136, Sept. 2014.

A. Taghavipour, A. Alasty and M. Saadat F., "Nonlinear Power Balance Control of a SPA hydraulic hybrid truck," in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, pp. 805-810, Jul. 2009.

A. Hoke, A. Brissette, K. Smith, A. Pratt and D. Maksimovic, "Accounting for Lithium-Ion Battery Degradation in Electric Vehicle Charging Optimization," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 3, pp. 691-700, Sept. 2014.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.