Dual-band monopole antennas for RF energy harvesting from the environment

Main Article Content

Edison Andres Zapata Ochoa
Francisco López
Germán Góez

Abstract

This paper presents two low-cost dual-band antennas for collecting ambient RF energy from the GSM-850, GSM-1900, and UMTS-2100 MHz bands. Both rectennas (Rectifying Antennas) are based on Defected Grounded Structure (DGS) antennas. The first one is designed with a square resonator ring. The bandwidth is between 73.4 and 145 MHz, with a gain of 2.29 and 3.53 dBi. The other has a bandwidth of 86 and 124.8 MHz with a gain of 1 and 3.8 dBi. In addition, a triple-band rectifier with an HSMS-286C Schottky diode is used to improve the RF to DC power conversion efficiency. Measurement results show that between 150 and 308 mV of DC is harvested during 8 hours at 50 meters from a telephone base station. In 86 continuous hours of exposure to this station, a DC voltage between 4.0 and 4.50 volts of ambient RF energy is obtained.

Article Details

How to Cite
Dual-band monopole antennas for RF energy harvesting from the environment. (2021). MASKAY, 12(1), 10-15. https://doi.org/10.24133/maskay.v12i1.2283
Section
TECHNICAL PAPERS

How to Cite

Dual-band monopole antennas for RF energy harvesting from the environment. (2021). MASKAY, 12(1), 10-15. https://doi.org/10.24133/maskay.v12i1.2283

References

[1] K. Shafique et al., “Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications,” IEEE Access, vol. 6, pp. 30932–30941, May. 2018.

[2] L.-G. Tran, H.-K. Cha, and W.-T. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro Nano Syst. Lett., vol. 5, no. 1, p. 14, Feb. 2017.

[3] K. Kaviarasu and V. Ganesh, “Design and simulation of a 900 MHz rectifier for Rectenna application,” in Proc. International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, Apr. 2015, pp. 754–756.

[4] A. Okba, S. Charlot, P. F. Calmon, A. Takacs, and H. Aubert, “Multiband rectenna for microwave applications,” in Proc. IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, May. 2016, pp. 1–4.

[5] Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, “A compact rectenna system with high conversion efficiency for wireless energy harvesting,” IEEE Access, vol. 6, pp. 35857–35866, Jun. 2018.

[6] D. K. Ho, I. Kharrat, V. D. Ngo, T. P. Vuong, Q. C. Nguyen, and M. T. Le, “Dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz,” in Proc. IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, Nov. 2016, pp. 306–310.

[7] C. Song et al., “A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3160-3171, Jul. 2016.

[8] T. A. Elwi and H. S. Ahmed, “A UWB Monopole Antenna Design based RF Energy Harvesting Technology,” in Proc. Third Scientific Conference of Electrical Engineering (SCEE), Baghdad, Iraq, Dec. 2018, pp. 111–115.

[9] M. M. Fakharian, “A Wideband Rectenna Using High Gain Fractal Planar Monopole Antenna Array for RF Energy Scavenging,” Int. J. Antennas Propag., Jun. 2020.

[10] Y. J. Cho, K. H. Kim, S. H. Hwang, and S. O. Park, “A miniature UWB planar monopole antenna with 5 GHz band-rejection filter,” in Proc. The European Conference on Wireless Technology, Parice, France, Oct. 2005,, pp. 511-514.

[11] K. Chung, J. Kim, and J. Choi, “Wideband microstrip-fed monopole antenna having frequency band-notch function,” IEEE Microw. Wirel. Components Lett., vol. 15, no. 11, pp. 766–768, Nov. 2005.

[12] S. Hu et al., “Backscattering cross section of ultrawideband antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 70–73, Mar. 2007.

[13] S. Soltani, M. Azarmanesh, P. Lotfi, and G. Dadashzadeh, “Two novel very small monopole antennas having frequency band notch function using DGS for UWB application,” AEU - International Journal of Electronics and Communications, vol. 65, no. 1, pp. 87–94, Jan. 2011.

[14] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, “Defected ground structure: fundamentals, analysis, and applications in modern wireless trends,” Int. J. Antennas Propag., Feb. 2017.

[15] A. E. Hidalgo and F. M. Rizo, “Microstrip antenna with metamaterial hybrid structure for 2.4 GHz,” Revista de la Facultad de Ingeniería, vol. 27, no. 1, pp. 1–18, Jul. 2021.

[16] M. Karaaslan, M. Bağmancı, E. Ünal, O. Akgol, and C. Sabah, “Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications,” Opt. Commun., vol. 392, pp. 31–38, Jun. 2017.

[17] A. Estévez Hidalgo, F. Marante Rizo, “Aumento del Ancho de Banda en Antenas de Microcintas a 2,4 GHz con Inserción de Metamateriales,” Ingeniería Electrónica, Automática y Comunicaciones, vol. 39, no. 1, pp. 1-15, Mar. 2018.

[18] M. J. Ammann and Z. N. Chen, “Wideband monopole antennas for multi-band wireless systems,” IEEE Antennas Propag. Mag., vol. 45, no. 2, pp. 146–150, Apr. 2003.

[19] P. V. Anob, K. P. Ray, and G. Kumar, “Wideband orthogonal square monopole antennas with semi-circular base,” in Proc. IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Boston, MA, USA, Jul. 2001, pp. 294–297.

[20] J. J. Lu, X. X. Yang, H. Mei, and C. Tan, “A Four-Band Rectifier with Adaptive Power for Electromagnetic Energy Harvesting,” IEEE Microw. Wirel. Components Lett., vol. 26, no. 10, pp. 819–821, Oct. 2016.

[21] C. J. Li and T. C. Lee, “2.4-GHz high-efficiency adaptive power,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 434–438, Feb. 2014.

[22] M. A. Nikravan and Z. Atlasbaf, “T-section dual-band impedance transformer for frequency-dependent complex impedance loads,” Electron. Lett., vol. 47, no. 9, pp. 551–553, Apr. 2011.

[23] H. Takhedmit et al., “A 2.45-GHz dual-diode RF-to-dc rectifier for rectenna applications,” in Proc. The 40th European Microwave Conference, Paris, France, Sep. 2010, pp. 37–40.

[24] A. F. B. Selva, A. L. G. Reis, K. G. Lenzi, L. G. P. Meloni, and S. E. Barbin, “Introduction to the software-defined radio approach,” IEEE Lat. Am. Trans., vol. 10, no. 1, pp. 1156–1161, Jan. 2012.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 9 10 > >>