Comparative analysis of propagation path loss models for mobile communication in Riobamba
Main Article Content
Abstract
Propagation loss models play an essential role in the planning and designing of a cellular network to determine critical aspects of the system, such as optimization, power level adjustments, and placement of wireless network antennas. In addition, these models are used to predict path loss in a given environment. This paper analyzes and compares different propagation models based on measured data: The log-normal Model, the Okumura-Hata Model, the Standford University Interim (SUI) Model, the COST-231 Model, and the Walfisch-Bertoni Model. The power measurement data is taken in 5 urban sectors of Riobamba at an operating frequency of the Claro telephone network of 1900 MHz with the help of the Network Cell Info Lite application. The analysis and comparison results conclude that the Log-Normal and SUI models perform best in the five environments.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and guarantee the journal the right to be the first publication of the work, as well as, licensed under a Creative Commons Attribution License that allows others share the work with an acknowledgment of the authorship of the work and the initial publication in this journal. Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with acknowledgment of its initial publication in this journal. Authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it may lead to productive exchanges as well as further citation earliest and oldest of published works.
How to Cite
References
OpenMindBBVA.Tecnologías móviles para el desarrollo del tercer mundo;2019.<https://www.bbvaopenmind.com/tecnologia/innovacion/tecnologias-moviles-para-el-desarrollo-del-tercer-mundo/.>[accessed May 15, 2022].
J. Huidobro, “Comunicaciones Móviles de Sistemas GSM, UMTS y LTE,” Madrid, RA-MA, S.A. Editorial y Publicaciones, 2014, p. 19.
RZ redes zone. Network Cell Info Lite: Una aplicación para ver las estadísticas de tu red móvil;2017<https://www.redeszone.net/2017/07/29/network-cell-info-lite-una-aplicacion-ver-las-estadisticas-red-movil/>/.>[accessed May 23, 2022].
F. J. García Rueda, “Modelos de propagación para comunicaciones móviles 4G y 5G,” M.S thesis, E.T.S.I. y Sistemas de Telecomunicación (UPM), 2016.
J.C García, O. A Rodriguez, J. L. Castillo, “Desempeño de Modelos de Propagación en Comunicación Móvil para la zona de Caldas Parte 1: Modelos para àreas urbanas,” X Congreso Internacional de Telecomunicaciones. Valdivia, Chile, 2002, pp. 1-2.
L. Yepez, M. Graginera, “Corroboración del modelo de propagación “indoor” Log-Normal Shadowing Path Loss Model y caracterización de los edificios de Eléctrica/Electrónica y de Aulas,” X JORNADAS DE INVESTIGACION, Sucre, Bolivia, 2012, p. 2.
M. Hata, "Empirical formula for propagation loss in land mobile radio services," in IEEE Transactions on Vehicular Technology, vol. 29, no. 3, pp. 317-325, Aug. 1980, doi: 10.1109/T-VT.1980.23859.
V. Erceg et al., "An empirically-based path loss model for wireless channels in suburban environments," IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), Sydney, NSW, Australia, 1998, pp. 922-927 vol.2, doi: 10.1109/GLOCOM.1998.776865.
V. Erceg, K.V.S. Hari, M.S. Smith, D.S. Baum et al, “Channel Models for Fixed Wireless Applications”, IEEE 802.16.3 Task Group Contributions 2001, Feb. 01.
A. Quintana et al., Estudio comparativo de los modelos de propagación de canal inalámbrico”, vol. 34, n. 1, p. 12-26, abr. 2013.
E. Damosso, “COST Action 231 : Digital mobile radio towards future generation systems: Final Report,” Brussels, Belgium, 1999, ch. 4.
L. Correia, “A view of the COST 231-Bertoni-Ikegami model,” in 2009 3rd European Conference on Antennas and Propagation, Berlin, pp 1682-1685, 2009.
J. Walfish y H. Bertoni, “A Theoretical Model of UHF Propagation in Urban Environments,” IEEE Transactions on Antennas and Propagation, vol. 36, nº 12, pp. 1788-1796, Diciembre 1988.
F. Ikegami, T. Takeuchi y S. Yoshida, “Theoretical prediction of mean field strength for urban mobile radio,” IEEE Transactions on Antennas and Propagation, vol. 39, nº 3, pp. 299-302, March 1991.
G. Barahona y D. Geovanny, “Diseño de una interfaz gráfica de los modelos de propagación para canales inalámbricos utilizando GUI y Site Viewer de Matlab,” M.S Thesis, Dept. Ingeniería en Telecomunicaciones, Guayaquil, Ecuador, 2020.
F. Ikegami, S. Yoshida, T. Takeuchi y M. Umehira, “Propagation Factors Controlling Mean Field Strength on Urban Streets,” IEEE Transactions on Antennas & Propagation, vol. AP 32, pp. 822-829, 1984.
J. Isabona, B. Idahosa, “Optimised Walficsh-Bertoni Model for Pathloss Prediction in Urban Propagation Environment,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, pp. 1788-1796, Nigeria, November 2012.