Analysis and implementation of differential GPS in single and double configurations

Main Article Content

Monica Zabala
Franklin López
Angel Ortega

Abstract

The standard positioning service (SPS), or undifferentiated measurements, contains errors in its measurements, affecting the final positioning solution of the receiver. The application of GPS differentiation techniques in simple (SD) and double (DD) configurations allows the elimination of errors that affect the GPS signal during the propagation path; among the most critical are errors produced by the atmosphere and troposphere. Between the reference receiver and the mobile GPS receiver (rover), errors are correlated in time and space according to the distance between them, and the elimination of common errors increases the accuracy of the final solution. The DGPS-Lab application is designed to execute the differentiation process in both configurations and verify the results by minimizing the errors in the positioning through the implemented DGPS algorithm.

Downloads

Download data is not yet available.

Article Details

How to Cite
Analysis and implementation of differential GPS in single and double configurations. (2017). MASKAY, 7(1), 41-48. https://doi.org/10.24133/maskay.v7i1.343
Section
TECHNICAL PAPERS

How to Cite

Analysis and implementation of differential GPS in single and double configurations. (2017). MASKAY, 7(1), 41-48. https://doi.org/10.24133/maskay.v7i1.343

References

[1] Consentino, R.J. Diggle D.W. “Understanding GPS Principles and Applications”, 2nd Edition, Boston London, Artech House Publishers, 2006.

[2] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 1: Fundamentals and Algorithms. ESA TM-23/1. ESA Communications, May 2013.

[3] Red GNSS de Monitoreo Continuo del Ecuador - REGME, Noviembre 2017. [Online]. Disponible en: http://www.geoportaligm.gob.ec/wordpress/.

[4] Trimble NetR9 GNSS Reference Receiver, Diciembre 2017. [Online]. Disponible en: http://www.trimble.com/Infrastructure/Trimble-NetR9.aspx.

[5] NEO-6 series Versatile u-blox 6 GPS modules, Diciembre 2017, [Online]. Disponible en: https://www.u-blox.com/en/product/neo-6-series.

[6] National Marine Electronics Association, Enero 2017. [Online]. Disponible en: http://www.nmea.org

[7] M. Zabala, “Determination of monitor threshold for a GBAS ground station”. M.S. thesis, Telecom Lab / Signal Processing Department, École Nationale de l’Aviation Civile. Toulouse, Francia, 2015.

[8] Takasu, T. RTKLIB:An Open Source Program Package for GNSS Positioning. [Online]. Disponible en: http://www.rtklib.com/.

[9] Steven M. Kay, “Fundamentals of Statistical Signal Processing Estimation Theory, Signal Processing Series”, Volume I, 1st Edition, PTR Prentice Hall, 1993.

[10] Steven M. Kay, “Fundamentals of Statistical Signal Processing Detection Theory, Signal Processing Series”, Volume II, 1st Edition, PTR Prentice Hall, 1993.

[11] López F., Ortega A., “Análisis e Implementación del diferencial de GPS con configuración simple y doble, para mejorar la precisión de un receptor GPS en la ciudad de Riobamba”, Tesis de ingeniería, Escuela de Ingeniería en Electrónica, Telecomunicaciones y Redes, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, Tech. Report., 2017.

[12] Borre, Kai and Strang, Gilbert. “Algorithms for Global Positioning”., Wellesley-Cambridge Press, 2012.

[13] J. Sanz Subirana, J.M. Juan Zornoza, M. Hernández-Pajares, GNSS Data processing. Volume 2: Laboratory Exercises. ESA TM-23/2. ESA Communications, May 2013.

Most read articles by the same author(s)