Design and implementation of a sensor network for monitoring solar radiation levels in the city of Loja
Main Article Content
Abstract
The present investigation focused on designing and implementing a system for monitoring solar radiation levels in Loja, Ecuador. The solar radiation levels monitoring system is based on developing a sensor network where the two ultraviolet (UV) sensors represent the network nodes. The sensors are wired and wireless to the base station, which means the network's core, where data processing, acquisition, and management are performed. The base station manages the data collected by the UV sensors. These data are linked to an application for mobile phones with the Android operating system. In the application, you can visualize the level of solar radiation in real-time, the history of the data, and the respective preventions according to the level of the ultraviolet index (IUV) presented. In turn, the implementation of a solar light was included for direct visualization of solar radiation levels.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and guarantee the journal the right to be the first publication of the work, as well as, licensed under a Creative Commons Attribution License that allows others share the work with an acknowledgment of the authorship of the work and the initial publication in this journal. Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with acknowledgment of its initial publication in this journal. Authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it may lead to productive exchanges as well as further citation earliest and oldest of published works.
How to Cite
References
[2] J. Rueda, and J. Talavera, “Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora,” Revista Colombiana de Computación (RCC), vol. 18, nº 2, pp. 58-74, 2017.
[3] S. Campaña, and J. Londoño, “Estudio de redes de sensores y aplicaciones orientadas a la recolección y análisis de señales Biomédicas,” Gerencia Tecnológica Informática (GTI), vol. 12, nº 33, pp. 85-99, 2013.
[4] C. Nayibe, “Redes de Sensores Inalámbricos,” Universidad Nacional de Colombia, Bogotá, 2014.
[5] J. Ranieri, S. Villar, y A. Rodríguez, “Sistemas Operativos,” 2016. [Online]. Available: https://es.slideshare.net/JoaoRanieri1/sistemas-operativos-69809663. [Último acceso: Junio 2019].
[6] J. Piña, “Guía Técnica radiación Ultravioleta de Origen Solar,” Ministerio de Salud (Chile), Santiago, 2011.
[7] C. Galizia, “Los grados de protección IP en los equipos e instalaciones y su interpretación según IEC y NEMA,” [Online]. Available: http://electrico.copaipa.org.ar/attachments/102_Interpreta ción%20de%20los%20Grados%20de%20Protección%20s egún%20IEC%20y%20NEMA.pdf. [Accessed 2019].
[8] S. Gabrielloni, “Enfemedades Cutáneas,” enero 2011. [Online]. Available: http://www.cosmetologas.com/noticias/val/912- 42/radiaciones-solares-y-sus-efectos-sobre-la-piel.html.[Accessed 2019].
[9] OMS, “Índice UV solar mundial: Guía práctica,” Ginebra: Organización Mundial de la Salud, 2003.
[10] A. Alvarado, “La radiación ultravioleta es mayor durante los equinoccios en Quito,” Diario El Comercio, 4 abril 2018. [Online]. Available: https://www.elcomercio.com/tendencias/quito-supera- escala-radiacionuv- organizacionmundialdelasalud.html?fbclid=IwAR0A4oi. [Accessed 2019].
[11] INAMHI, “Visualizador de datos de índice UV,” 2019. [En línea]. Available: http://186.42.174.236/IndiceUV2/. [Accessed 2019].
[12] Chen, J., “Physics of solar energy,” John Wiley and Sons, 2011.