Design and implementation of a sensor network for monitoring solar radiation levels in the city of Loja

Main Article Content

Kevin Rodrigo Orozco Jaramillo
Ángel José Ordóñez Mendieta

Abstract

The present investigation focused on designing and implementing a system for monitoring solar radiation levels in Loja, Ecuador. The solar radiation levels monitoring system is based on developing a sensor network where the two ultraviolet (UV) sensors represent the network nodes. The sensors are wired and wireless to the base station, which means the network's core, where data processing, acquisition, and management are performed. The base station manages the data collected by the UV sensors. These data are linked to an application for mobile phones with the Android operating system. In the application, you can visualize the level of solar radiation in real-time, the history of the data, and the respective preventions according to the level of the ultraviolet index (IUV) presented. In turn, the implementation of a solar light was included for direct visualization of solar radiation levels.

Article Details

How to Cite
Design and implementation of a sensor network for monitoring solar radiation levels in the city of Loja. (2019). MASKAY, 10(1), 44-55. https://doi.org/10.24133/maskay.v10i1.1523
Section
TECHNICAL PAPERS

How to Cite

Design and implementation of a sensor network for monitoring solar radiation levels in the city of Loja. (2019). MASKAY, 10(1), 44-55. https://doi.org/10.24133/maskay.v10i1.1523

References

[1] L. Delgado, “Índice ultravioleta,” Departamento de Física, Universidad de Antofagasta, 2003.

[2] J. Rueda, and J. Talavera, “Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora,” Revista Colombiana de Computación (RCC), vol. 18, nº 2, pp. 58-74, 2017.

[3] S. Campaña, and J. Londoño, “Estudio de redes de sensores y aplicaciones orientadas a la recolección y análisis de señales Biomédicas,” Gerencia Tecnológica Informática (GTI), vol. 12, nº 33, pp. 85-99, 2013.

[4] C. Nayibe, “Redes de Sensores Inalámbricos,” Universidad Nacional de Colombia, Bogotá, 2014.

[5] J. Ranieri, S. Villar, y A. Rodríguez, “Sistemas Operativos,” 2016. [Online]. Available: https://es.slideshare.net/JoaoRanieri1/sistemas-operativos-69809663. [Último acceso: Junio 2019].

[6] J. Piña, “Guía Técnica radiación Ultravioleta de Origen Solar,” Ministerio de Salud (Chile), Santiago, 2011.

[7] C. Galizia, “Los grados de protección IP en los equipos e instalaciones y su interpretación según IEC y NEMA,” [Online]. Available: http://electrico.copaipa.org.ar/attachments/102_Interpreta ción%20de%20los%20Grados%20de%20Protección%20s egún%20IEC%20y%20NEMA.pdf. [Accessed 2019].

[8] S. Gabrielloni, “Enfemedades Cutáneas,” enero 2011. [Online]. Available: http://www.cosmetologas.com/noticias/val/912- 42/radiaciones-solares-y-sus-efectos-sobre-la-piel.html.[Accessed 2019].

[9] OMS, “Índice UV solar mundial: Guía práctica,” Ginebra: Organización Mundial de la Salud, 2003.

[10] A. Alvarado, “La radiación ultravioleta es mayor durante los equinoccios en Quito,” Diario El Comercio, 4 abril 2018. [Online]. Available: https://www.elcomercio.com/tendencias/quito-supera- escala-radiacionuv- organizacionmundialdelasalud.html?fbclid=IwAR0A4oi. [Accessed 2019].

[11] INAMHI, “Visualizador de datos de índice UV,” 2019. [En línea]. Available: http://186.42.174.236/IndiceUV2/. [Accessed 2019].

[12] Chen, J., “Physics of solar energy,” John Wiley and Sons, 2011.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)