Develop a MATLAB algorithm for the resolution optimization of a USRP B210 card for SDRadar applications

Main Article Content

David Moreno Avilés
Julio Mejía
Hugo Moreno

Abstract

This paper analyzes the universal software radio peripherical (USRP) B210 limitations and characteristics to develop applications on Software Defined Radar (SDRadar). The developed algorithm uses a frequency-modulated constant wave (FMCW), which implements a chirp signal, considering that 25 MHz is the maximum bandwidth that the USRP can provide with a maximum resolution of 6 meters. The method improves the resolution through several signals transmitted with different bandwidths, obtaining different resolutions, storing them in a simple matrix, and analyzing them. After simulations, it is determined that the 14 measurements done with bandwidth spacing of 0.5 MHz between every signal is the best way to improve the resolution. Finally, two scenarios for the optimization procedure are described. The first scenario is limited by a measurement error of less than 1 meter, and the second scenario is limited by a measurement error between 1 and 2 meters, getting better effectiveness of the measurement under the first scenario with 69.15% of detected objectives compared with the 30.85% of the effectiveness of the second one. This paper demonstrates that the algorithm is practical in SDRadar applications to detect objectives for topographic applications or SAR systems.

Article Details

How to Cite
Develop a MATLAB algorithm for the resolution optimization of a USRP B210 card for SDRadar applications. (2017). MASKAY, 7(1), 31-40. https://doi.org/10.24133/maskay.v7i1.338
Section
TECHNICAL PAPERS

How to Cite

Develop a MATLAB algorithm for the resolution optimization of a USRP B210 card for SDRadar applications. (2017). MASKAY, 7(1), 31-40. https://doi.org/10.24133/maskay.v7i1.338

References

[1] J. Sanfuentes., ‟Historia del radar”. Revista de Marina. Armada de Chile. Santiago. p. 1-7, 2000.

[2] D. de la Mata, ‟Diseño de detectores robustos en aplicaciones radar”. Ph.D. dissertation, Universidad de Alcalá, Madrid, España. 2012.

[3] C. Gutierrez and A. Nieto, ‟Teledetección: nociones y aplicaciones”. Salamanca, España, Tech. Rep. Jul 2006.

[4] S. Constanzo et al., ‟High Resolution Software Defined Radar System for Target Detection,” Journal of Electrical and Computer Engineering, p. 7, Ene 2013.

[5] E. Patiño and L. Serrano, ‟Programación de una plataforma sdr (software defined radio) para la detección de minas antipersonas”. Tech. Rep. Mar 2014.

[6] E. Hernández et al., ‟Uso de FPGA para realizar compresión del pulso de radar”, Científica, vol. 9, pp. 73-81, Oct 2005.

[7] Y. Yang and A. Fathy, ‟Development and implementation of a real-time see-through-wall radar system based on FPGA”, IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 1270-1280, May 2009.

[8] L. Aldaz., ‟Análisis y estudio de la simulación de los parámetros del radar en el programa MATLAB”, Escuela Superior Politécnica del Ejercito, Latacunga, Ecuador, Tech. Rep., Ene 2005.

[9] M. Richards. ‟Principles of modern Radar”. Raleigh NC United States of America: Scitec Publishing Inc. 2010.

[10] J. Barberán and R. Dominguez, ‟Sistema Radar para reconstrucción de objetos 3D”, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, Tech. Rep., Mar 2016.

[11] R. Alvarez and S. Shagñay, ‟Sistema Radar Para Análisis Y Reconstrucción De Perfiles Topográficos A Media Escala”, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, Tech. Rep., May 2015.

[12] G. Charvat. ‟Small And Short Range Radar System”. United States of America: CRC Press. 2014.

[13] C. Wolff, ‟Radar Tutorial”, Febrero 2017. [online]. Disponible: http://www.radartutorial.eu/02.basics/Frequency%20Modulated%20Continuous%20Wave%20Radar.en.html.

[14] J. Requena and F. Beltrán, ‟Modulaciones digitales”, Londres, UK and Bogotá, Colombia, 2015.

[15] Mathworks, ‟System Requirements & Platform Availability”. Marzo 2017.

[16] Ettus, ‟USRP B210 (Board Only)”, Mayo 2017. [online]. Disponible: https://www.ettus.com/product/details/UB210-KIT.

[17] F. Mejía et al., ‟Implementar un DOMAIN controller basado en el protocolo LDAP, que incluya servicios GATEWAY bajo plataformas LINUX, para ser usado en las aulas informáticas educativas gubernamentales del Municipio de Metapán”, Universidad Francisco Gavidia, San Salvador, El Salvador, Tech. Rep., Feb. 2012.

[18] S. Constanzo et al., ‟Potentialities of USRP Based Software Defined Radar Systems”, Progress in Electromagnetism Research B, vol. 53, pp. 417-435, Jun 2013.

[19] C. Merchán, ‟Diseño e implementación de un sistema radar utilizando sistema sdr a través de tecnología usrp para aplicaciones topográficas”, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, Tech. Rep., Nov 2016.

[20] Ettus, ‟USRP B200/B210 Bus Series”, Mayo 2017. [online]. Disponible: https://www.ettus.com/content/files/b200-b210_spec_sheet.pdf.

[21] B. Saraguro, ‟Implementación de un sistema de transmisiones para televisión digital terrestre en el Ecuador a través de módulos USRP”, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, Tech. Rep., Jun 2016.

[22] J. Fominaya, ‟Nuevas técnicas de localización, clasificación e identificación para radares en vigilancia superficial y alta resolución en escenarios LPI”, Ph.D. dissertation, Universidad Politécnica de Madrid, Madrid, España, 2004.

[23] Ettus, ‟Board Mounted GPSDO (OCXO)”, Mayo 2017. [online]. Disponible: https://www.ettus.com/product/details/GPSDO-MINI.

[24] J. Zozaya, ‟Simulador básico de un radar de apertura sintética”, Marzo 2015. [online]. Disponible: https://www.researchgate.net/profile/Alfonso_Zozaya/publication/280287287_Simulador_básico_de_un_radar_de_apertura_sintética/links/55afc94408ae32092e06ec19.pdf

Most read articles by the same author(s)