Dual-band monopole antennas for RF energy harvesting from the environment

Main Article Content

Edison Andres Zapata Ochoa
Francisco López
Germán Góez

Abstract

This paper presents two low-cost dual-band antennas for collecting ambient RF energy from the GSM-850, GSM-1900, and UMTS-2100 MHz bands. Both rectennas (Rectifying Antennas) are based on Defected Grounded Structure (DGS) antennas. The first one is designed with a square resonator ring. The bandwidth is between 73.4 and 145 MHz, with a gain of 2.29 and 3.53 dBi. The other has a bandwidth of 86 and 124.8 MHz with a gain of 1 and 3.8 dBi. In addition, a triple-band rectifier with an HSMS-286C Schottky diode is used to improve the RF to DC power conversion efficiency. Measurement results show that between 150 and 308 mV of DC is harvested during 8 hours at 50 meters from a telephone base station. In 86 continuous hours of exposure to this station, a DC voltage between 4.0 and 4.50 volts of ambient RF energy is obtained.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dual-band monopole antennas for RF energy harvesting from the environment. (2021). MASKAY, 12(1), 10-15. https://doi.org/10.24133/maskay.v12i1.2283
Section
TECHNICAL PAPERS

How to Cite

Dual-band monopole antennas for RF energy harvesting from the environment. (2021). MASKAY, 12(1), 10-15. https://doi.org/10.24133/maskay.v12i1.2283

References

[1] K. Shafique et al., “Energy Harvesting Using a Low-Cost Rectenna for Internet of Things (IoT) Applications,” IEEE Access, vol. 6, pp. 30932–30941, May. 2018.

[2] L.-G. Tran, H.-K. Cha, and W.-T. Park, “RF power harvesting: a review on designing methodologies and applications,” Micro Nano Syst. Lett., vol. 5, no. 1, p. 14, Feb. 2017.

[3] K. Kaviarasu and V. Ganesh, “Design and simulation of a 900 MHz rectifier for Rectenna application,” in Proc. International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India, Apr. 2015, pp. 754–756.

[4] A. Okba, S. Charlot, P. F. Calmon, A. Takacs, and H. Aubert, “Multiband rectenna for microwave applications,” in Proc. IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, May. 2016, pp. 1–4.

[5] Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, “A compact rectenna system with high conversion efficiency for wireless energy harvesting,” IEEE Access, vol. 6, pp. 35857–35866, Jun. 2018.

[6] D. K. Ho, I. Kharrat, V. D. Ngo, T. P. Vuong, Q. C. Nguyen, and M. T. Le, “Dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz,” in Proc. IEEE International Conference on Sustainable Energy Technologies (ICSET), Hanoi, Vietnam, Nov. 2016, pp. 306–310.

[7] C. Song et al., “A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3160-3171, Jul. 2016.

[8] T. A. Elwi and H. S. Ahmed, “A UWB Monopole Antenna Design based RF Energy Harvesting Technology,” in Proc. Third Scientific Conference of Electrical Engineering (SCEE), Baghdad, Iraq, Dec. 2018, pp. 111–115.

[9] M. M. Fakharian, “A Wideband Rectenna Using High Gain Fractal Planar Monopole Antenna Array for RF Energy Scavenging,” Int. J. Antennas Propag., Jun. 2020.

[10] Y. J. Cho, K. H. Kim, S. H. Hwang, and S. O. Park, “A miniature UWB planar monopole antenna with 5 GHz band-rejection filter,” in Proc. The European Conference on Wireless Technology, Parice, France, Oct. 2005,, pp. 511-514.

[11] K. Chung, J. Kim, and J. Choi, “Wideband microstrip-fed monopole antenna having frequency band-notch function,” IEEE Microw. Wirel. Components Lett., vol. 15, no. 11, pp. 766–768, Nov. 2005.

[12] S. Hu et al., “Backscattering cross section of ultrawideband antennas,” IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 70–73, Mar. 2007.

[13] S. Soltani, M. Azarmanesh, P. Lotfi, and G. Dadashzadeh, “Two novel very small monopole antennas having frequency band notch function using DGS for UWB application,” AEU - International Journal of Electronics and Communications, vol. 65, no. 1, pp. 87–94, Jan. 2011.

[14] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, “Defected ground structure: fundamentals, analysis, and applications in modern wireless trends,” Int. J. Antennas Propag., Feb. 2017.

[15] A. E. Hidalgo and F. M. Rizo, “Microstrip antenna with metamaterial hybrid structure for 2.4 GHz,” Revista de la Facultad de Ingeniería, vol. 27, no. 1, pp. 1–18, Jul. 2021.

[16] M. Karaaslan, M. Bağmancı, E. Ünal, O. Akgol, and C. Sabah, “Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications,” Opt. Commun., vol. 392, pp. 31–38, Jun. 2017.

[17] A. Estévez Hidalgo, F. Marante Rizo, “Aumento del Ancho de Banda en Antenas de Microcintas a 2,4 GHz con Inserción de Metamateriales,” Ingeniería Electrónica, Automática y Comunicaciones, vol. 39, no. 1, pp. 1-15, Mar. 2018.

[18] M. J. Ammann and Z. N. Chen, “Wideband monopole antennas for multi-band wireless systems,” IEEE Antennas Propag. Mag., vol. 45, no. 2, pp. 146–150, Apr. 2003.

[19] P. V. Anob, K. P. Ray, and G. Kumar, “Wideband orthogonal square monopole antennas with semi-circular base,” in Proc. IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229), Boston, MA, USA, Jul. 2001, pp. 294–297.

[20] J. J. Lu, X. X. Yang, H. Mei, and C. Tan, “A Four-Band Rectifier with Adaptive Power for Electromagnetic Energy Harvesting,” IEEE Microw. Wirel. Components Lett., vol. 26, no. 10, pp. 819–821, Oct. 2016.

[21] C. J. Li and T. C. Lee, “2.4-GHz high-efficiency adaptive power,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 434–438, Feb. 2014.

[22] M. A. Nikravan and Z. Atlasbaf, “T-section dual-band impedance transformer for frequency-dependent complex impedance loads,” Electron. Lett., vol. 47, no. 9, pp. 551–553, Apr. 2011.

[23] H. Takhedmit et al., “A 2.45-GHz dual-diode RF-to-dc rectifier for rectenna applications,” in Proc. The 40th European Microwave Conference, Paris, France, Sep. 2010, pp. 37–40.

[24] A. F. B. Selva, A. L. G. Reis, K. G. Lenzi, L. G. P. Meloni, and S. E. Barbin, “Introduction to the software-defined radio approach,” IEEE Lat. Am. Trans., vol. 10, no. 1, pp. 1156–1161, Jan. 2012.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>