Estrategia de gestión de la energía en vehículos eléctricos con pila de combustible y sistema de almacenamiento híbrido utilizando control predictivo económico

Contenido principal del artículo

José Luis Sampietro
Vicenc Puig
Ramon Costa Castelló

Resumen

En este trabajo se propone el control predictivo económico como técnica para la gestión energética óptima de un vehículo híbrido. Se describe el modelo utilizado para el control y a partir del mismo se diseña un controlador predictivo económico. Finalmente, se estudia el mejor ajuste de los pesos del controlador que consiga la mayor reducción del consumo de la pila de combustible con la ayuda de baterías y supercapacitores. Para ello se determinan los puntos de consumo máximo y mínimo de la pila de combustible, y se caracteriza el problema de control multiobjetivo mediante la determinación de las curvas de Pareto. El artículo concluye con una discusión de los resultados y los trabajos futuros.

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

Detalles del artículo

Cómo citar
Estrategia de gestión de la energía en vehículos eléctricos con pila de combustible y sistema de almacenamiento híbrido utilizando control predictivo económico. (2019). MASKAY, 9(2), 31-40. https://doi.org/10.24133/maskay.v9i2.1145
Sección
ARTÍCULOS TÉCNICOS

Cómo citar

Estrategia de gestión de la energía en vehículos eléctricos con pila de combustible y sistema de almacenamiento híbrido utilizando control predictivo económico. (2019). MASKAY, 9(2), 31-40. https://doi.org/10.24133/maskay.v9i2.1145

Referencias

[1] S. Alegre, J. V. Míguez, and J. Carpio, “Modelling of electric and parallel-hybrid electric vehicle using matlab/simulink environment and planning of charging stations through a geographic information system and genetic algorithms,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 1020–1027, 2017.

[2] J. Delbeke, G. Klaassen, and S. Vergote, “Climate-related energy policies,” EU Climate Policy Explained, pp. 61–91, 2015.

[3] A. Nordlund, J. Jansson, and K. Westin, “New transportation tech- nology: norm activation processes and the intention to switch to an electric/hybrid vehicle,” Transportation Research Procedia, vol. 14, pp. 2527–2536, 2016.

[4] M. H. Ullah, T. Gunawan, M. Sharif, and R. Muhida, “Design of environmental friendly hybrid electric vehicle,” in Proc. International Conference on Computer and Com- munication Engineering (ICCCE), 2012, pp. 544–548.

[5] L.-q. Jin, X.-h. Zeng, and W. Wang, “The control strategy and cost analysis for series plug-in hybrid electric vehicle,” in Proc. 2nd International Conference on Advanced Computer Control (ICACC), 2010, pp. 350–354.

[6] M. Hannan, F. Azidin, and A. Mohamed, “Hybrid electric vehicles and their challenges: A review,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 135–150, 2014.

[7] S. A. Rahman, N. Zhang, and J. Zhu, “A comparison on fuel economy and emissions for conventional hybrid electric vehicles and the uts plug- in hybrid electric vehicle,” in Proc. the 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, pp. 20 25.

[8] M. Ehsani, Y. Gao, and A. Emadi, Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC Press, 2009.

[9] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” Trans. on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, 2010.

[10] S. Zhang and R. Xiong, “Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming,” Applied Energy, vol. 155, pp. 68–78, 2015.

[11] C. Pan, L. Chen, L. Chen, C. Huang, and M. Xie, “Research on energy management of dual energy storage system based on the simulation of urban driving schedules,” International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 37–42, 2013.

[12] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” Transactions on Power Electronics, vol. 27, no. 1, pp. 122–132, 2012.

[13] X. Liu, Q. Zhang, and C. Zhu, “Design of battery and ultracapacitor multiple energy storage in hybrid electric vehicle,” in Proc. Vehicle Power and Propulsion Conference, 2009, pp. 1395 1398.

[14] S. M. Lukic, S. G. Wirasingha, F. Rodriguez, J. Cao, and A. Emadi, “Power management of an ultracapacitor/battery hybrid energy storage system in a hev,” in Proc. Vehicle Power and Propulsion Conference, 2006, pp. 1–6.

[15] Z. Song, J. Li, X. Han, L. Xu, L. Lu, M. Ouyang, and H. Hofmann, “Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles,” Applied Energy, vol. 135, pp. 212–224, 2014.

[16] C.-C. Lin, H. Peng and J. Grizzle, “A stochastic control strategy for hybrid electric vehicles,” in Proc. of the 2004 American Control Conference, 2004, pp. 4710–4715.

[17] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M. Kang, “Power management strategy for a parallel hybrid electric truck,” Transactions on Control Systems Technology, vol. 11, no. 6, pp. 839–849, 2003.

[18] R. Zhang and Y. Chen, “Control of hybrid dynamical systems for electric vehicles,” in Porc. of the 2001 American Control Conference, 2001, pp. 2884–2889.

[19] V. H. Johnson, K. B. Wipke, and D. J. Rausen, “Hev control strategy for real-time optimization of fuel economy and emissions,” SAE Technical Paper, Tech. Rep., 2000.

[20] P. Pisu, K. Koprubasi, and G. Rizzoni, “Energy management and drivability control problems for hybrid electric vehicles,” in Proc. Of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, 2005, pp. 1824–1830.

[21] P. Pisu and G. Rizzoni, “A supervisory control strategy for series hybrid electric vehicles with two energy storage systems,” in Proc. of IEEE Conference Vehicle Power and Propulsion, 2005, pp. 8–14.

[22] M. Back, Pra¨diktive Antriebsregelung zum energieoptimalen Betrieb von Hybridfahrzeugen. Univ.-Verlag Karlsruhe, 2005.

[23] V. Kumar, K. Rana, and P. Mishra, “Robust speed control of hybrid electric vehicle using fractional order fuzzy pd and pi controllers in cascade control loop,” Journal of the Franklin Institute, vol. 353, no. 8, pp. 1713–1741, 2016.

[24] Z. Wei, J. Xu, and D. Halim, “Hev power management control strategy for urban driving,” Applied Energy, vol. 194, pp. 705–714, 2017.

[25] S. Onori, L. Serrao, and G. Rizzoni, “Adaptive optimal supervisory control methods,” in Hybrid Electric Vehicles. Springer, 2016, pp. 79–87.

[26] C. Wu, Y. Hung, and C. Hong, “On-line supercapacitor dynamic models for energy conversion and management,” Energy Conversion and Management, vol. 53, no. 1, pp. 337–345, 2012.

[27] R. Carter, A. Crude, and P. J. Hall, “Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle,” Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1526–1533, 2012.

[28] T. Fletcher, R. Thring, and M. Watkinson, “An Energy Management Strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle,” International Journal of Hydrogen Energy, vol. 41, no. 46, pp. 21503-21515, Dec. 2016.

[29] M. Uzunoglu and M. Alam, “Dynamic modeling, design and simulation of a pem fuel cell/ultra-capacitor hybrid system for vehicular applica- tions,” Energy Conversion and Management, vol. 48, no. 5, pp. 1544– 1553, 2007.

[30] L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maran- zana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber et al., “A review of pem fuel cell durability: materials degradation, local heterogeneities of aging and possible mitigation strategies,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 3, no. 6, pp. 540–560, 2014.

[31] G. Karavalakis, F. Alvanou, S. Stournas, and E. Bakeas, “Regulated and unregulated emissions of a light duty vehicle operated on diesel/palm- based methyl ester blends over nedc and a non-legislated driving cycle,” Fuel, vol. 88, no. 6, pp. 1078–1085, 2009.

[32] S. F. Tie and C. W. Tan, “A review of energy sources and energy management system in electric vehicles,” Renewable and sustainable energy reviews, vol. 20, pp. 82–102, 2013.

[33] A. Lidozzi and L. Solero, “Power balance control of multiple-input dc- dc power converter for hybrid vehicles,” in Proc. of the 2004 IEEE International Symposium on Industrial Electronics, 2004, pp. 1467 1472.

[34] S. Campanari, G. Manzolini, and F. G. De la Iglesia, “Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations,” Journal of Power Sources, vol. 186, no. 2, pp. 464–477, 2009.

[35] L. Li, X. Li, X. Wang, J. Song, K. He, and C. Li, “Analysis of downshifts improvement to energy efficiency of an electric vehicle during regenerative braking,” Applied Energy, vol. 176, pp. 125–137, 2016.

[36] C. Qiu and G. Wang, “New evaluation methodology of regenerative bra- king contribution to energy efficiency improvement of electric vehicles,” Energy Conversion and Management, vol. 119, pp. 389–398, 2016.

[37] P. Xiao, J. Lou, L. Niu, and H. Gao, “Modeling and simulation of rege- nerative braking performance of electric vehicles based on decoupling strategy.” Key Engineering Materials, vol. 693, 2016.

[38] J. L. Rosero Beltra´n, “Estrategia de control de modelo predictivo para el despacho y almacenamiento de energ´ıa renovable en sistemas h´ıbri- dos,” Master’s thesis, Monterrey: Instituto Tecnolo´gico y de Estudios Superiores Monterrey, 2012.

[39] J. B. Rawlings, D. Angela, and C. N. Bates, “Fundamentals of economic model predictive control,” in Proc. of the 51st IEEE conference on decision and control (CDC), 2012, pp. 3851–3861.

[40] T. Hofman, R. van Druten, M. Steinbuch, and A. Serrarens, “Rule-based equivalent fuel consumption minimization strategies for hybrid vehicles,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 5652–5657, 2008.

[41] B.-C. Chen, Y.-Y. Wu and H.-C. Tsai, “Design and analysis of power management strategy for range extended electric vehicle using dynamic programming,” Applied Energy, vol. 113, pp. 1764–1774, 2014.

[42] R. Amrit, J. B. Rawlings, and L. T. Biegler, “Optimizing process eco- nomics online using model predictive control,” Computers & Chemical Engineering, vol. 58, pp. 334–343, 2013.

[43] B. P. Omell and D. J. Chmielewski, “Igcc power plant dispatch using infinite-horizon economic model predictive control,” Industrial & Engi- neering Chemistry Research, vol. 52, no. 9, pp. 3151–3164, 2013.

[44] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of eco- nomic model predictive control methods,” Journal of Process Control, vol. 24, no. 8, pp. 1156–1178, 2014.

[45] R. Toro Olmedo, “Smart tuning of predictive controllers for drinking water networked systems,” Master’s thesis, Universitat Politécnica de Catalunya, 2010.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.