Robust multidimensional optical modulation based on hybrid subcarrier/amplitude/phase/dual polarization for wavelength-division multiplexing systems

Main Article Content

Andres Ortega
Brayan Fabian Peñafiel Pinos

Abstract

Here, we propose a novel scheme based on advanced digital modulation techniques in optical communications to achieve a single-channel transmission rate above 100 Gb/s. We utilize a hybrid scheme amplitude/phase/frequency/dual polarization, combined with multidimensional dual lattice and a low-density parity-check-coded modulation. The Stokes parameters are applied to the proposed scheme to map the four-dimensional classical polarization IX, QX, IY, and QY in a three-dimensional space. In addition, the packing theory is applied to the bit interleaving process in the proposed system. Three wavelengths are packaged before being transmitted over a wavelength-division multiplexing optical channel. This modulation process uses symmetrical geometric shapes, such as a hypercube or a polyhedron, based on the molecular links theory using a grouping of 12 and 13/15 bits for the cubic and spherical lattices, respectively. The proposed technique is evaluated in the context of long-distance communications over distances up to 100km. The bit error rate (BER) results showed that the optical signal-to-noise ratio was approximately 4dB over 50km. In addition, the power spectral efficiency was found to be three lambdas, which is considered a good performance considering the effects of distance and the non-linear effects influencing the number of lambdas. Also, we use an optical time-division multiplexing scheme (OTDM) to achieve a transmission rate beyond 1Tbit/s, where the speed effect is evaluated, considering that the power spectral efficiency is degraded.

Article Details

How to Cite
Robust multidimensional optical modulation based on hybrid subcarrier/amplitude/phase/dual polarization for wavelength-division multiplexing systems. (2019). MASKAY, 10(1), 8-19. https://doi.org/10.24133/maskay.v10i1.1322
Section
TECHNICAL PAPERS

How to Cite

Robust multidimensional optical modulation based on hybrid subcarrier/amplitude/phase/dual polarization for wavelength-division multiplexing systems. (2019). MASKAY, 10(1), 8-19. https://doi.org/10.24133/maskay.v10i1.1322

References

[1] G. D. Forney y L. F. Wei, “Multidimensional Constellations-Part I: Introduction. Figures of Merit, and Generalized Cross Constellations,” IEEE Journal on Selected Areas in Communications, vol. 7, pp. 877-892, Aug. 1989.

[2] M. Taherzadeh, H. Nikopour, A. Bayesteh y H. Baligh, “SCMA Codebook Design,” Vancouver, Dec. 2014.

[3] D. Sharma y S. Kumar, “An overview of elastic optical networks and its enabling technologies,” Int. J. Eng. Technol.(IJET), vol. 9, pp. 1643-1649, Jun-Jul. 2017.

[4] S. G. Evangelides, L. F. Mollenauer, J. P. Gordon y N. S. Bergano, “Polarization Multiplexing with Solitons,” Journal of Lightwave Technology, vol. 10, pp. 28-35, Jan. 1992.

[5] D. Qian, N. Cvijetic, J. Hu y T. Wang, “108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection,” Journal of Lightwave Technology, vol. 28, pp. 484-493, Aug. 2010.

[6] F. Tian, D. Guo, B. Liu, Q. Zhang, Q. Tian, R. Ullah y X. Xin, “A Novel Concatenated Coded Modulation Based on GFDM for Access Optical Networks,” IEEE Photonics Journal, vol. 10, pp. 1-8, Feb. 2018.

[7] J. Müllerová, D. Korček y M. Dado, “On wavelength blocking for XG-PON coexistence with GPON and WDM-PON networks,” in Proc. of the 14th International Conference on Transparent Optical Networks (ICTON), Coventry, UK, Jul. 2012. pp. 1-4.

[8] H. G. Batshon, I. B. Djordjevic, L. L. Minkov, L. Xu, T. Wang y M. Cvijetic, “Proposal to Achieve 1 Tb/s per Wavelength Transmission Using Three-Dimensional LDPC-Coded Modulation,” IEEE Photonics Technology Letters, vol. 20, pp. 721-723, Apr. 2008.

[9] S. O. Arik, D. Millar, T. Koike-Akino, K. Kojima y K. Parsons, “High-dimensional modulation for mode-division multiplexing,” in Proc. of the Optical Fiber Communication Conference, San Francisco, CA, USA, Mar. 2014, pp. 1-4.

[10] H. Bülow, “Polarization QAM modulation (POL-QAM) for coherent detection schemes,” in Proc. of the Optical Fiber Communication Conference, San Diego, CA, USA, Mar. 2009, pp. 25-27.

[11] J. K. Fischer, C. Schmidt-Langhorst, S. Alreesh, R. Elschner, F. Frey, P. W. Berenguer, L. Molle, M. Nölle y C. Schubert, “Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals,” Journal of Lightwave Technology, vol. 33, pp. 1445-1451. Dec. 2014.

[12] M. Arabaci, I. B. Djordjevic, L. Xu y T. Wang, “Four-dimensional nonbinary LDPC-coded modulation schemes for ultra-high-speed optical fiber communication,” IEEE Photonics Technology Letters, vol. 23, pp. 1280-1282, Jun. 2011.

[13] J. Leibrich y W. Rosenkranz, “Power efficient multidimensional constellations,” in Proc. of the Photonic Networks; 15. ITG Symposium, Leipzig, Germany , May. 2014.

[14] H. G. Batshon y I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photonics Technology Letters, vol. 22, pp. 299-301, Jan. 2010.

[15] H. G. Batshon y I. B. Djordjevic, “Hybrid amplitude/phase/polarization coded modulation for 100 Gb/s optical transmission and beyond,” in Proc. of the LEOS Annual Meeting Conference Proceedings, 2009. LEOS'09. IEEE, Belek-Antalya, Turkey, Oct. 2009, pp. 604-605.

[16] N. J. A. S. J.H Conway, Sphere Packings, Lattices and Groups, vol. 338, 1998, pp. 0,488.

[17] F. Buchali y H. Bülow, “Experimental transmission with POLQAM and PS-QPSK modulation format using a 28-Gbaud 4-D transmitter,” in Proc. of the 38th European Conference and Exhibition on Optical Communications (ECOC), Amsterdam, Netherlands, Sep. 2012, pp. 1-3.

[18] H. G. Batshon, I. Djordjevic y T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express, vol. 18, pp. 20546-20551, Sep. 2010.

[19] J. Yao, J. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. Loy Lam, J. Liu y C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Optics Communications, vol. 191, pp. 341-345, Feb. 2001.

[20] D. T. Nguyen, J. Abou y A. Morimoto, “Ultrashort pulse generation using fiber FM laser,” Optical review, vol. 19, pp. 337-340, 2012.

[21] J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys, vol. 40, pp. 1-47, Oct. 2007.

[22] M. Born y E. Wolf, “Principles of Optics,” chap. 1, Cambridge University Press, vol. 7, pp. 360-370, 1975.

[23] W. H. McMaster, “Matrix representation of polarization,” Reviews of modern physics, vol. 33, p. 8, Jan-Mar. 1961.

[24] G. Milione, H. I. Sztul, D. A. Nolan y R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Physical review letters, vol. 107, p. 053601, Jul. 2011.

[25] X. Liu y F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Optics Express, vol. 16, p. 21944, Dec. 2008.

[26] R. Deiterding y S. W. Poole, “Robust split-step Fourier methods for simulating the propagation of ultra-short pulses in single-and two-mode optical communication fibers,” in Splitting Methods in Communication, Imaging, Science, and Engineering, Springer, Jan. 2016, pp. 603-625.

[27] M. Yoshida, J. Nitta, K. Kimura, K. Kasai, T. Hirooka y M. Nakazawa, “Single-channel 3.84 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with frequency-stabilized and mode-locked laser,” in Proc. of the Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, pp. Th2A.52, Mar. 2017, Jun. 2017.

[28] N. D. Nguyen y L. N. Binh, “Demultiplexing techniques of 320 Gb/s OTDM-DQPSK signals: A comparison by simulation,” in Proc. of the 2010 IEEE International Conference on Communication Systems (ICCS), Singapore, Singapore, Nov. 2010. pp. 171-175.

[29] R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer y others, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Optics Express, vol. 20, pp. 317-337, Jan. 2012.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>