MPC algorithm implementation to a two-level inverter for a three-phase induction motor
Main Article Content
Abstract
The present work shows a variable frequency drive design and implementation of a three-phase induction motor using the model predictive control algorithm (MPC). The strategy is based on estimating the internal model machine to be controlled. The simulation analyzes the controller's performance against variations in the estimation of the motor parameters at different operating points. The control system uses the TMS320F28335 microcontroller and a three-phase, two-level inverter using an IRAM 136 3063b. Finally, the performance of the experimental design is compared using computational tools.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms: Authors retain the copyright and guarantee the journal the right to be the first publication of the work, as well as, licensed under a Creative Commons Attribution License that allows others share the work with an acknowledgment of the authorship of the work and the initial publication in this journal. Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, placing it in an institutional repository or publishing it in a book), with acknowledgment of its initial publication in this journal. Authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it may lead to productive exchanges as well as further citation earliest and oldest of published works.
How to Cite
References
[2] P. S. B. Sakti and S. Riyadi, “Hardware Implementation of Simplified VVVF Inverter for Induction Motor Based on SVM,” in iSemantic 2019, Semarang, Indonesia, 2019, pp. 487–491.
[3] F. Wang, X. Mei, J. Rodriguez, and R. Kennel, “Model predictive control for electrical drive systems-an overview,” Trans. Electr. Mach. Syst., vol. 1, no. 3, pp. 219–230, Sep. 2017.
[4] K. Wróbel, P. Serkies, and K. Szabat, “Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches,” Energies, vol. 13, no. 5, p. 1193, Mar. 2020.
[5] S. Borreggine, V. G. Monopoli, G. Rizzello, D. Naso, F. Cupertino, and R. Consoletti, “A review on model predictive control and its applications in power electronics,” in Proc. AEIT AUTOMOTIVE 2019, Turin, Italy, 2019, pp. 1–6.
[6] Y. Zhang, B. Xia, H. Yang and J. Rodriguez, "Overview of model predictive control for induction motor drives", in Chinese Journal of Electrical Engineering, vol. 2, no. 1, pp. 62-76, Jun. 2016.
[7] Texas Instrument, “Product Folder Order Now TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs) 1 Device Overview,” 2007. [Online]. Available: www.ti.com. Accessed on: May 26, 2020.
[8] Y. Zhang, Y. Peng and C. Qu, "Model Predictive Control and Direct Power Control for PWM Rectifiers With Active Power Ripple Minimization," in IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4909-4918, Nov.-Dec. 2016.
[9] M. Rivera et al., "A modulated model predictive control scheme for a two-level voltage source inverter," in Proc. ICIT 2015, Seville, Spain, 2015, pp. 2224-2229.
[10] “International Rectifier - IRAM136-3063B | 30A, 600V Integrated Power Module with internal shunt resistor.” [Online]. Available: http://www.irf.com/part/30A-600V-INTEGRATED-POWER-MODULE-WITH-INTERNAL-SHUNT-RESISTOR/_/A~IRAM136-3063B. Accessed on: May 26, 2020.
[11] S. Benavides-Córdoba et al., “Implementation of a Distribution Static Compensator D-STATCOM: Hardware and Firmware Description,” Sci. Tech., vol. 24, no. 4, pp. 555–565, Dic. 2019.
[12] LEM, “Current transducer FHS 40-P/SP600,” 2010. [Online]. Available: moz-extension://28db55c8-a632-4aee-afcd-69a05257d468/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.lem.com%2Fsites%2Fdefault%2Ffiles%2Fproducts_datasheets%2Ffhs%252040-p%2520sp600.pdf. Accessed on: Jun 06, 2020.
[13] Y. Abdel-Rehim, “Parameter identification of induction motor,” M.S. thesis, Dept. Computer Science and Electrical Engineering, West Virginia Univ., USA, 2015.